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Abstract 
 

This paper describes a novel method for calculating the threshold of the multi-pass beam 
breakup (BBU) in recirculating linacs. The method is based on a simple idea of the 
equilibrium between power deposited by the beam in a higher-order mode (HOM) and Ohmic 
losses in a cavity. The method is used to derive a formula for the threshold current for a single 
HOM rotated at an arbitrary angle and a 4x4 recirculation matrix. We also use the method to 
describe HOM voltage behavior above and below the threshold current.  

 
 

Introduction 
 

A beam bunch can excite a dipole HOM in a cavity if it passes through the cavity off-
axis. The magnetic field of the excited mode deflects following bunches. The kick 
produced by the mode can translate into a transverse displacement at the cavity location 
after recirculation. Thus, the recirculated beam constitutes a feedback which can cause 
the voltage of the HOM to grow. The equilibrium between power deposited by the beam 
in the HOM and the power dissipated determines the threshold current of the multi-pass 
beam breakup instability. Using these ideas, we derive an equation for the threshold 
current for a single cavity rotated at an arbitrary angle and an arbitrary 4x4 matrix in the 
next section. We also derive formulas that describe behavior of the HOM voltage above 
and below the threshold. Some applications of the threshold formula to suppression of 
BBU are discussed at the end of the paper. 
 
 
Threshold for a Single, Rotated HOM with a 4x4 Recirculation Matrix  
 

The voltage of a dipole HOM excited by a bunch traveling through a cavity with a 
displacement x is given by [1] 
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where Va is the amplitude of the HOM voltage at the radius of the beam pipe a, and ϕ is 
its phase. The voltage Vq in the second term of equation (1) is the voltage at the beam 
pipe radius a induced by the bunch passing through the cavity: 
 

a
x

Q
R

c
qaVq 














=

2
2

2
ωω  .                                            (2) 



08 July 2004 
JLAB-TN-04-019 

 
The ½ in the second term of equation (1) reflects the beam loading theorem. The voltage 
Vq is much smaller than Va for any interesting case. Thus, we can approximate the energy 
deposited by a bunch in a dipole HOM as   
 

a
xqVU a )cos(ϕ−=∆ .                                               (3) 

 
In a two dimensional case, the transverse displacement has to be substituted with the 
projection of the beam displacement on the mode direction: 
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yielding the formula 
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where α is the mode rotation angle. If we assume that the last formula describes the 
energy deposited on the first pass, the energy deposited on the second pass, after 
recirculation, can be expressed as  
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where we used the subscript “out” to mark coordinates of the recirculated bunch and 
assumed that the voltage amplitude Va does not change much during the re-circulation 
time Tr. Coordinates of the recirculated bunch at the cavity, xout and yout, can be expressed 
in terms of the bunch coordinate at the first pass, xin and yin, and the transverse voltage of 
the HOM at the moment of the first pass as 
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In the last formula, we introduced the transverse voltage V⊥ and dropped terms 
proportional to x’in and y’in. The transverse voltage can be expressed via the longitudinal 
voltage as [1]: 
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Using the last formula, we can rewrite equation (7) as  
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The average power deposited by the beam in the HOM can be calculated as the average 
energy deposited by individual bunches multiplied by the bunch repetition frequency: 
 

boutinbeam fUUU ⋅∆+∆=& .                                       (10) 
 

The averaging is done with respect to the phase of the HOM, ϕ, taken at the moment of 
arrival of beam bunches on the first pass. The Ohmic losses in the cavity can be 
expressed as [1] 
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Combining equations (10) and (11) the energy balance equation for the HOM has the 
form  
 

cboutincbeamcav PfUUPUU −⋅∆+∆=−= && .                             (12) 
 

Terms proportional to xin⋅cos(ϕ), yin⋅cos(ϕ), xin⋅cos(ϕ+ωTr), and yin⋅cos(ϕ+ωTr) yield 
zero after averaging if xin and yin are slowly varying, steering errors. If the HOM 
frequency is not equal to a harmonic of the bunch repetition rate, fbh ≠ fhom, terms 
proportional to cos(ϕ)⋅sin(ϕ) yield zero and the average value of the sin2(ϕ) term is equal 
to ½. Taking this into account, we can rewrite equation (12) as 
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At the threshold, dU/dt = 0. Thus, the threshold current is defined by  
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The last equation yields the threshold current we are seeking 
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The formula is similar to the formula presented in [2], except for the modified M12 and 
the missing exponential term in the denominator, which is usually close to 1. (An 
alternate derivation of the above expression for the threshold current is given in 
Appendix A). 
 
 
HOM Voltage Behavior Below and Above the Threshold 
 

The energy, U, stored in the HOM can be expressed via the voltage Va/a as   
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Plugging equation (16) into equation (13), we get the equation for the energy change 
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The solution of the last equation is  
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Then the HOM voltage depends on time as  
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Using equation (19) we can introduce the effective quality factor, Qeff, for the beam-plus-
HOM system, given by the equation  
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At zero current, Qeff is equal to the quality factor of the cavity Qo. As the beam current 
increases, Qeff becomes larger and turns to infinity at the threshold. That is, the voltage in 
the HOM and the beam coordinate will oscillate infinitely long and will not decay. If the 
beam current exceeds the threshold current, the beam-plus-HOM system becomes 
unstable, and the amplitude of oscillations grows exponentially. The last formula can be 
also rewritten in terms of the decay time as: 
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Discussion 
 

• Equation (15) shows that a 90° rotation inserted in the recirculation path does not 
necessarily eliminate the possibility of BBU. If M32 is not equal to -M14 and an 
HOM mode is rotated at the angle α not equal to 0° or 90°, then the recirculated 
beam will not come back to the cavity with the angle (α + 90°) and its projection 
on the HOM will not be zero. To get an infinite threshold for a 4x4 matrix with 
zero off-diagonal 2x2 matrices and for all HOM polarizations, M32 has to be equal 
to -M14. 

 
• Equation (15) is correct in the non-resonant case, that is, when fbh ≠ fhom. On 

resonance, the average value of the sin2(ϕ) term is no longer equal to ½. An exact 
knowledge of the phase is required. The method presented in this paper does not 
provide exact phase information; rather it must be obtained by other means. 
Simulations using a newly developed 2D code show that the threshold current - 
while on the resonance - can be significantly different from the threshold 
predicted by equation (15). 

 
• The formalism presented can be used to describe a beam-based feedback system 

which feeds a signal from beam position monitors back to a kicker in the injection 
line. If xin and yin vary proportionally to Vacos(ω⋅t+ϕo), the threshold given by 
equation (15) will have additional terms due to the contributions of xin and yin 
which do not cancel as before (to see this, refer to the derivation in going from 
equation (13) to equation(15)).  Care must be taken when designing such a 
feedback system however, since depending on the phase (ω⋅t+ϕo), the offending 
HOMs can be either damped or excited further. 

 
• Equation (15) has been compared to results of simulations that will be presented 

in a separate paper [3]. The threshold predicted from equation (15) and those 
found from the simulations agree very well, except cases when |sin(ωTr)| << 1. 
However, these cases are less interesting practically because they correspond to a 
very high threshold current. 
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Appendix A: Alternative Derivation of Threshold Current Using the   

Wake Potential Formalism 
 

We present a more intuitive approach in deriving equation (15) for those readers who 
are more comfortable with the derivation of the threshold current using the wake 
potential formalism (see Refernces [2],[4]). 
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Recall that in all previous approaches, one assumes that the beam motion is decoupled, 
and that the orientation of the dipole HOM coincides with the x or y direction of motion. 
One then derives the threshold current for each plane independently. For example, if we 
consider the horizontal plane, we would write that the beam deflection due to the HOM 
voltage is given by the expression 
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The displacement on the second pass can then be written as 
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However, only the component of the beam in the direction of the cavity HOM voltage 
can exchange energy with the mode. Thus, to find the projection of the beam 
displacement on the HOM voltage we take the following dot product 
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Certainly for analysis in a single plane the vector notation used above is unnecessary. 
However, the purpose of the previous exercise was to show how an HOM oriented with 
an angle, α, with respect to the x-axis, and 4x4 recirculation matrix can be treated. 
Repeating the procedure above, equations (2’), (3’) and (4’) become 
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One can use the usual methods and use the result of equation (7’) in equation (1’) to 
extract the threshold current. Suffice it to say that the result will be exactly the expression 
given in equation (15). 
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