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Abstract 

    The superconductivity in Radio Frequency (RF) is an increasingly important branch of accelerator physics and 

technology because it heightens accelerating performances and lowers operating expenses. The normal method for estimating 

a superconducting RF (SRF) cavity performance is through low power and high power measurements without a beam load. 

At present, the one-port SRF cavity measurement equations are the most popular formulae of the SRF cavity measurements. 

The one-port SRF cavity measurement equations are the approximation of the two-port measurement equations. To 

understand cavity behavior and performance more accurately, in this paper, the two-port SRF cavity’s measurement 

equations for low power and high power measurements are developed at steady state and transient state by a series equivalent 

circuit. As an example, the modified measurement equations are deduced for the exponential decayed incident power pulse. 

 

I. Introduction 

    RF superconductivity is an increasingly important branch of accelerator physics and technology because of its high 

accelerating performances and low operating expenses. Accelerator projects are increasingly based on Superconducting RF 

technology, e.g. storage rings (CERN, DESY, KEK), linacs for electrons or positrons (Frascati, JLab, HEPL, Darmstadt), 

linacs for heavy ions (Argonne, Legnaro, JAERI), the Spallation Neutron Source (ORNL), and the Energy Recovery Linacs 

(ERLs) (JLab-FEL). Development programs are underway for high current ERLs (Cornell, KEK, JLab) which may open up a 

whole new opportunities for industrial and research applications. At present, the high energy physicists and accelerator 

experts come to an agreement that the next high energy International Linear Collider (ILC) should use Superconducting RF 

technology. 

    The low power and high power measurements without a beam load are necessary methods of estimating superconducting 

RF cavity performance before the SRF cavity operation of accelerating beam. Padamsee etc. have developed the one-port, 

namely only Fundamental Power Coupler (FPC), SRF cavity’s measurement equations [1] by using cavity stored energy 
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change in a parallel equivalent circuit. J. Weaver,[2] G. A. Loew[3] and L. Merminga[4] obtained the one-port SRF cavity’s 

equations at steady state and transient state using a parallel equivalent circuit and the Laplace transformations. At present, the 

one-port SRF cavity’s measurement equations are the most popular formulae of the SRF cavity measurements. 

    The input power coupler is normally used for the one-port measurement. In the conditions of a pulse incident power, the 

measurement signals are incident and reflected and transmitted signals. The stability of the phase and amplitude flatness on 

the top of the accelerating field pulse in the SRF cavity are very important for pulsed accelerating beam bunches. The 

reflected wave frequency is not as same as the cavity’s, and its amplitude has no direct and clear relation with cavity field’s 

amplitude. So a reflected signal can not be directly used to control the phase and the flatness of the pulse, especially for a 

short pulse. In contrast, the second port, for example, the field probe (FP) signal has a same frequency and a direct relation 

with the cavity. In reality, most superconducting cavities have more than two ports. For example, the Spallation Neutron 

Source (SNS) cavities have four ports: one FPC, one FP, and two Higher Order Mode couplers (HOMs). Developing two-port 

cavity’s measurement equations is necessary to understand cavity behavior and to control cavity’s phase and amplitude more 

accurately for SRF cavity’s measurements and beam operation.  

    In this paper, a series equivalent circuit is used to develop two-port cavity measurement equations. First, the cavity 

equivalent circuit model was set up, and the relation between cavity’s and circuit’s parameters is introduced. Then the 

cavity’s equations at steady state are derived. These equations are used to do lower power measurements (<1 Watt), 

Continuous Wave (CW) high power measurements, and the cavity’s port parameter calibration. After that, the transient state 

equations are obtained for a square wave drive pulse by solving differential equation. These equations are used in the pulsed 

incident high power measurements. For non-square incident wave, the measurement formulae need to be modified. As an 

example, the modified equations are obtained for an exponential decayed and pulsed incident power. 

 

II. Equivalent Circuit Model. 

 

Fig. 1 SNS medium β (0.61) cavity structure. 
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    In general, a superconducting cavity has one FPC, one FP, and two or more HOMs. FPC supplies the fundamental RF 

power to the cavity. The RF signal picked up from the FP is used to detect the field phase and gradient in the cavity. HOMs 

are used to damp the HOM power. Fig.1 is a SNS 6-cell cavity with four ports.  

 

(a) Equivalent circuit of a two-port cavity coupling system. 

 

(b) Alternative form of the circuit (a) without transformers. 

Fig.2 Equivalent circuit of a two-port cavity coupling system at the reference planes of cavity side. 

 

    In the two-port measurements, the signals that we can measure are incident, reflected, and transmitted. The emitted 

signal is defined as the reflected signal from the stored energy in the system when the incident signal is switched off. The 

cavity can be equivalent to either a parallel or a series resonance circuit. The series circuit is comparatively simple to develop 

for two-port cavity equations without beam loading. The cavity RF characteristics can be derived from this series circuit. 

Assuming the impedances of signal source and load are real and given by RG and RL, as shown in Fig2, where Rc, L, C are the 

resistance, inductance and capacitance of the SRF cavity. E is the equivalent voltage of generator in frequency ω. For a high 

frequency generator, the harmonic time structure is much smaller than the amplitude modulation by scale of several orders 

(10-6 for SNS case). So the voltage amplitude can be written as E(ω,t)=E(t)exp(iωt). then the circuit equivalent current is 

I(ω,t)=I(t)exp(iωt). The cavity voltage Vc ‘s amplitude is 
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The cavity voltage Vc can be related to the maximum accelerating gradient Eacc when the beam bunch is accelerated at the 
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RF wave crest, and related to effective accelerating length d as well as the Transit Time Factor (TTF) TT. 
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The tp is at the flat top the RF pulse. Normally, the cavity’s intrinsic parameters are defined at the cavity’s resonance 

frequency ω0. The cavity stored energy U at ω0 is: 
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The cavity’s emitted power Pe, dissipated power Pd and transmitted power Pt are: 
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The cavity’s intrinsic quality factor is cavity geometry and surface resistance dependent only: 

       )(1),(),( 000000 ccd CRRLtPtUQ ωωωωω ===  with )(10 LC=ω                           (3) 

The external quality factor of the cavity input port is cavity and coupler’s geometry dependent only: 
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The external quality factor of the cavity output port is similar: 
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The coupling coefficients of the input port and output port to cavity are also cavity surface resistance dependent: 
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The loaded QL is: 
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The cavity shunt impedance R is: 
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    Normally the R/Q0 is obtained by a cavity simulation code and written as R/Q. Please pay attention that, this R/Q is still 

not yet used by accelerator physicist or a linac’s definition which should be: 
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Based on above equations, the cavity equivalent circuit parameters can be expressed with the cavity parameters as: 
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Note that G here is cavity geometry factor in the unit of resistance. Rc here is not as same as the conventional series resonance 

circuit where the Rs denotes as the cavity surface resistance.   

    Table 1 lists the SNS medium beta cavity parameters and its corresponding equivalent circuit parameters. 

Table 1. A SNS medium beta cavity parameters and its equivalent circuit parameters.  

SNS medium beta 
cavity parameters 

Equivalent circuit 
parameters 

f0 805 MHz L 119.41 nH 
Racc/Q 279 Ω C 0.3273pF 
Qe 7.3E+5 n1 4.07E-3 
Qt 1.26E+12 n2 3.10E-6 
Q0 8.85E+9 Rc 68.2 nΩ 
d 0.682 m RL=RG 50 Ω 
TT 0.679   
R/Q 604 Ω   
G 177 Ω   
Rs 20 nΩ   

 
    For the circuit shown in Figure 2 (b), its differential equation relating to the current I(ω,t), and voltage E(ω,t) is: 

                     ),(),(1),()(),(
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This is the SRF cavity’s basic equation based on the series equivalent circuit. In the following sections, we will discuss the 

solution of this equation for different driving signal E(ω,t).  
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III. Steady State Equations 

   If an incident power is Continuous Wave (CW), and its amplitude change reaches a constant after charging time of 

10QL/ω0. At the steady state, the generator voltage E(ω,t)=E0exp(iωt) and the current I(ω,t)=I0exp(iωt). Substituting these 

into equation (10), we find 
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Because the steady state current intensity 2),( tI ω is a constant, the A=B=0 in equation (13). Then the circuit current 

intensity I(ω,t) can be written as: 
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And the modulus of the current intensity I(ω,t) is: 
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Above equation shows the cavity circuit current I(ω,t) is decided not only by the incident power amplitude and cavity 

intrinsic parameters (such as surface resistance, coupling factors), but also the frequency deference between incident power 

(klystron) frequency ω and cavity resonance frequency ω0. The incident power from generator is: Gin RtEP 4),( 2ω= [5].  

For a CW operation, we can ignore the time dependent part at this moment. The cavity dissipated power is: 
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The transmitted power Pt is written as 
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The transmission coefficient T can written as 
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Normally, scattering transmission parameter S21 is used to measure the T(ω). The T(ω) can be written as: 
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At cavity resonance frequency:  
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    If ∆ωb is the cavity bandwidth, namely QL= ω0/ ∆ωb, putting ω=ω0± ∆ωb/2, then for QL>>1 or ω0>> ∆ω 
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This equation is used to measure cavity QL in low power measurement, for example, by a network analyzer. The cavity 

emitted power Pe is:  
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This emitted power in a CW operation has no physical meaning when the RF generator is the power source. Because we are 
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transforming the RF circulator load RG into the cavity side of the resistance n1
2RG. When the power source is switched off, we 

will see from the next section that, the emitted power will replace the reflected power. Then the cavity’s stored energy is the 

power source.  The circulator resistance RG is the heat load for the emitted power through the FPC transformer n1.     

From equation (16), (17) and (22), the stored energy becomes: 
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Then the cavity accelerating gradient can be written as: 
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For ω=ω0, equation (21) can be written as 
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The reflected power Pr is: 
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According to above equation, the reflection coefficient Гe(ω) for the input port can be written as 
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 For ω=ω0, 
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The reflection coefficient Гt(ω0) of the output port is by switching “t” and “e” notes: 
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From equation (28) and (29), the FPC coupling factor βe and FP coupling factor βt can be expressed as: 
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A typical design for FPC is over-coupled (βe>1), and the FP under-coupled (βt<1). Above equation can be used as long as 

βe≥βt+1. At this situation, the FP reflection coefficient S22 is less than FPC reflection coefficient S11.  

For other condition like when testing a SRF cavity vertically where the input power is limited, the FPC coupling factor βe 

could be closed to 1 and FP coupling factor βt <<1: 
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    Using above results and equation (21), the cavity FPC external quality factor Qe and the FP external quality factor Qt are:  
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    Equations (30) to (32) are used to measure and calibrate FPC’s and FP’s external Q at warm cavity or during the 

prototyping to measure the external Q of HOM couplers.  The cavity’s Q0 can be obtained by equation (7) then, but the error 

would not be acceptable for a cold (2K) cavity when βe>>1. 

 

IV. Transient State Equations 

   If the incident power is pulsed wave, the cavity is in a transient state at the pulse start and end. As shown in the equivalent 

circuit Fig 3, the pulse start is defined as RF switch on; and the pulse end is RF switch off. First we consider the pulse is a 



 10

square wave. For a standard square wave pulse, E(ω,t)=E0exp(iωt) after switching RF on, and E(ω,t)=0 after switching RF 

off. 

 

a. RF Switch on. 

 

b. RF Switch off. 

Fig. 3 The equivalent circuits in transient state. 

 

A. RF Switch On 

   For RF switch on, substituting E(ω,t)=E0exp(iωt) into equation (10), at steady state, the circuit current I(ω,t) can be 

obtained as equation (13).  
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It’s corresponding current module square 2),( tI ω  is 
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Here ∆ω=ω-ω0. Based on this current, the cavity dissipated power Pd(ω,t) is: 
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Transmitted power Pt is written as: 
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The transmission coefficient T(ω, t) can be written as: 
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The cavity emitted power Pe in this case has no physical meaning but relation to Pd and Pt:  
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 The equation (35), (36) and (39) display the Pd(t), Pt(t) and Pe(t) have similar relation at pulse mode as equation (23): 
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Then the cavity accelerating gradient can be written as: 
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For ω=ω0, equation (41) can be rewritten as: 
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The cavity’s stored energy change is: 
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the dtdU can be written as: 
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The cavity stored energy U(t) is: 
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The cavity intrinsic quality is: 
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Comparing equation (46) and equation (7), we find there is a different factor of 
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The reflected power Pr is: 
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For ω=ω0, the reflected power could become as: 
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This equation can be simplified as following and is similar to the one-port equation except a βt at the bottom. 
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B. RF Switch Off 

After switch RF off, namely, after a pulse length of τ0, E(ω,t)=0, the equation (11) becomes as: 
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As shown in Fig. 3 (b), the circuit frequency is dominated by cavity frequency ω0 after RF switch off. The initial boundary 
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condition of the switch off is: 
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and I(ω0,t→+∞)=0. 

Using this boundary condition, the circuit current I(ω0,t) can be solved: 
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And the circuit current module square 2),( tI ω  is: 
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The cavity’s dissipated power Pd, the transmitted power Pt and the emitted power Pe are: 
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The stored energy change is: 
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The cavity stored energy is: 
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This shows that the equation (7) can be also used at this state.  

The reflected power now becomes as 
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The emitted power becomes reflected power which can be measured and also has the physical meaning in this state. 

According above results, the Eacc is: 
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(57) 

From equation (53), we found 

          btktPtPtP teter +−−=+== )()log(10)(log10)(log10)(log10 0τββ                        (58) 

Here k=10·log(e)·(ω0/QL)=4.343ω0/QL, and b=10log(Qt/Qe) is a constant. This equation can be used to exactly measure the 

loaded QL at pulse mode by fitting transmitted power Pt or the emitted power Pe. We can define 
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Here K is a cavity intrinsic constant, which can obtain by measuring the ratio of emitted power Pe and transmitted power Pt 

after RF switch off. Combining equation (59) and (38), the coupling factors are expressed as: 
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If the incident power pulse length τ1 >10QL/ω0, then 1
2
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Figure 4: SNS medium beta cavity’s series circuit current I(t), accelerating gradient Eacc(t), dissipated power Pd(t), 

emitted power Pe(t) (no physical meaning when Pin(t) is on), transmitted power Pt(t), stored energy change 

)(tdtdU and reflected power Pr(t) in different drive pulse lengths. The amplitude of the incident power Pin is 

60 kW, the frequency is 805 MHz. We used cavity parameters in table 1. So τL=QL/ω0=0.1435 ms. 
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Figure 5: Combined plot from Figure 4 with pulse length of 15τL.  
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Figure 6: SNS medium beta cavity’s reflected power Pr(t) and transmitted power Pt(t) in the drive pulse 

length of 10 τL. The amplitude of the incident power Pin is 60 kW, the cavity resonance frequency is 805 

MHz. We used cavity parameters in table 1. So τL=QL/ω0=0.1435 ms. ∆f=f-f0 is the frequency difference 

between the drive klystron and cavity’s resonance frequencies.  

    

    As shown in Figure 6, the change of cavity’s reflected power Pr waveforms indicates that when the cavity detuning is 

large enough, the all incident power will be reflected back like incident square wave. The ∆f=805Hz corresponds about 65.7o 

off resonance crest. The transmitted power Pt reaches maximum at cavity resonance frequency ω= ω0. To maximize the 

reflected or transmitted power peak can be used to judge the optimum tuning condition of the cavity’s frequency tuner or 
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phase. 

 

V. Decayed Incident Power 

 

    If the incident power is square wave pulse, and its amplitude change can be ignored in the time scale of 10QL/ω0, we can 

use above equations to evaluate cavity performance. If the incident power’s amplitude change can not be ignored, we need to 

modify above equations. One such of example is the 1MW pulsed klystron installed at JLab CMTF by LANL. The total 

capacitance of the capacitor bank in the Pulse Forming Network (PFN) of the klystron was limited. We saw a drop during the 

2ms of driving pulse.  

 

A. RF Switch On 

For a pulsed incident power which is exponentially decay with the form Pin(t)=Pinexp(-2αt), the equivalent voltage 

becomes: 
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The differential equation (11) becomes: 
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Using the slowly-varying amplitude approximation and the RF switch on boundary condition, the solution of the above 

equation is: 
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Here ∆ω=ω−ω0. Corresponding current module square 2),( tI ω  is: 
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Then the cavity dissipated power Pd(t) is: 
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and the transmitted power Pt(t) is written as: 
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The cavity’s transmission coefficient T(ω0) is: 
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The cavity’s emitted power Pe(t) is: 
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Again, the emitted power here has no physical meaning. Combining equations (65) (66) and (68), the cavity stored energy 

can be expressed as: 
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Then the cavity accelerating gradient can be written as: 
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The above equations show that the stored energy and accelerating gradient formula have the same form as normal square 

pulse’s. At ω=ω0, the accelerating gradient equation can be rewritten as: 
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The cavity stored energy change dU/dt can be written as: 
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Certainly the cavity’s stored energy is: 
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The cavity intrinsic quality factor is: 
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This equation shows a same format as equation (46). For ω=ω0, the equation becomes equation (7) 

The reflected power Pr is: 
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B. RF Switch Off 

    After RF switch off, all the boundary conditions are as same as RF switch off in the normal pulse. All the equations of the 

decayed incident power have same form as the normal pulse’s. But the physical quantities, such as I(τ0) etc., should be 

replaced by the value at the pulse end. 
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Figure 7: The SNS medium beta cavity’s reflected power Pr(t), transmitted power Pt(t), accelerating gradient Eacc(t) in the 

incident power Pin(t) pulse length of 15τ0 with decay rate of α. The amplitude of the incident power Pin=60kW. Drive 

frequency is 805Mz, and τ0= QL /ω0=0.1435ms. 
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Figure 8: The SNS medium beta cavity M082 test data in JLab CMTF and comparison with the analytic fitting data in 

the α=0.3/τ0=1/3.84 (ms)-1 decay rate of incident pulse. τ0=1.153ms. The initial amplitude of incident power is Pin=216kW. 

The Eacc(Test) was calculated by one-port measurement equations. 

    The incident power decay rate α has a strong effect on the reflected power’s, transmitted power’s, and cavity gradient’s 

waveforms. As shown in Fig. 7 the decay rate α is 5%, 10% and 50% of 1/τ0=ω0/QL  separately. 

    The incident power used to measure SNS cavities at JLab Cryomodule Test Facility (CMTF) was a decayed pulse. After 

fitting to the exponential decay form, we fund the decay rate is α=0.3/τ0=1/3.84 (ms)-1. The measurement data used in this 

analysis were taken on the medium beta No. 8 cryomodule cavity #2 at 9:36AM on April, 8 2004 
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(Waveform_040804_093645_ M08_2.txt). Substituting this α and Pin=216kW into equations (66), (71), (75), (65), and (72), 

we find that the analytic results of the reflected, transmitted power can fit the test dada very well as shown in Fig.8. The only 

discrepancy is on the Eacc, the analytical data is about 3.7% lower than measured data at top. The test data was calculated by 

one-port measurement equations [7].  

Conclusion 

   The two-port RF cavity’s measurement equations based a series equivalent circuit can accurately measure the cavity’s 

parameters without beam load, such as the cavity in a vertical Dewar or in a horizontal cryomodule. When coupling strength 

βe is closed to 1, these equations can be even used to measure the cavity’s intrinsic quality factor Q0. Substituting βt=0 into 

the two-port cavity equations, the two-port equations be simplified into one-port cavity equations [1-4]. 

    In the pulsed mode operation, the cavity stored energy change dU/dt and FPC coupling are the cause of the reflected 

power Pr and transmitted power Pt. Emitted power Pe only has the physical meaning when the drive power is switched off. It 

becomes reflected power Pr and is external Q ratio of FP to FPC times of transmitted power Pt. In practice, the incident power 

Pin is not always square wave pulse. To measure cavity’s parameters more accurately, like loaded quality factor QL, 

accelerating gradient Eacc, the measurement equations need to be modified. 

    LRC series equivalent circuit is a good physical model to measure the electrical characteristics of superconducting RF 

cavity. 
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