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Abstract

The superconductivity in Radio Frequency (RF) is an increasingly important branch of accelerator physics and
technology because it heightens accelerating performances and lowers operating expenses. The normal method for estimating
a superconducting RF (SRF) cavity performance is through low power and high power measurements without a beam load.
At present, the one-port SRF cavity measurement equations are the most popular formulae of the SRF cavity measurements.
The one-port SRF cavity measurement equations are the approximation of the two-port measurement equations. To
understand cavity behavior and performance more accurately, in this paper, the two-port SRF cavity’s measurement
equations for low power and high power measurements are developed at steady state and transient state by a series equivalent

circuit. As an example, the modified measurement equations are deduced for the exponential decayed incident power pulse.

1. Introduction

RF superconductivity is an increasingly important branch of accelerator physics and technology because of its high
accelerating performances and low operating expenses. Accelerator projects are increasingly based on Superconducting RF
technology, e.g. storage rings (CERN, DESY, KEK), linacs for electrons or positrons (Frascati, JLab, HEPL, Darmstadt),
linacs for heavy ions (Argonne, Legnaro, JAERI), the Spallation Neutron Source (ORNL), and the Energy Recovery Linacs
(ERLs) (JLab-FEL). Development programs are underway for high current ERLs (Cornell, KEK, JLab) which may open up a
whole new opportunities for industrial and research applications. At present, the high energy physicists and accelerator
experts come to an agreement that the next high energy International Linear Collider (ILC) should use Superconducting RF
technology.

The low power and high power measurements without a beam load are necessary methods of estimating superconducting
RF cavity performance before the SRF cavity operation of accelerating beam. Padamsee etc. have developed the one-port,

namely only Fundamental Power Coupler (FPC), SRF cavity’s measurement equations [1] by using cavity stored energy



change in a parallel equivalent circuit. J. Weaver,[2] G. A. Loew[3] and L. Merminga[4] obtained the one-port SRF cavity’s
equations at steady state and transient state using a parallel equivalent circuit and the Laplace transformations. At present, the
one-port SRF cavity’s measurement equations are the most popular formulae of the SRF cavity measurements.

The input power coupler is normally used for the one-port measurement. In the conditions of a pulse incident power, the
measurement signals are incident and reflected and transmitted signals. The stability of the phase and amplitude flatness on
the top of the accelerating field pulse in the SRF cavity are very important for pulsed accelerating beam bunches. The
reflected wave frequency is not as same as the cavity’s, and its amplitude has no direct and clear relation with cavity field’s
amplitude. So a reflected signal can not be directly used to control the phase and the flatness of the pulse, especially for a
short pulse. In contrast, the second port, for example, the field probe (FP) signal has a same frequency and a direct relation
with the cavity. In reality, most superconducting cavities have more than two ports. For example, the Spallation Neutron
Source (SNS) cavities have four ports: one FPC, one FP, and two Higher Order Mode couplers (HOMSs). Developing two-port
cavity’s measurement equations is necessary to understand cavity behavior and to control cavity’s phase and amplitude more
accurately for SRF cavity’s measurements and beam operation.

In this paper, a series equivalent circuit is used to develop two-port cavity measurement equations. First, the cavity
equivalent circuit model was set up, and the relation between cavity’s and circuit’s parameters is introduced. Then the
cavity’s equations at steady state are derived. These equations are used to do lower power measurements (<l Watt),
Continuous Wave (CW) high power measurements, and the cavity’s port parameter calibration. After that, the transient state
equations are obtained for a square wave drive pulse by solving differential equation. These equations are used in the pulsed
incident high power measurements. For non-square incident wave, the measurement formulae need to be modified. As an

example, the modified equations are obtained for an exponential decayed and pulsed incident power.

I1. Equivalent Circuit Model.

Fig. 1 SNS medium p (0.61) cavity structure.



In general, a superconducting cavity has one FPC, one FP, and two or more HOMs. FPC supplies the fundamental RF
power to the cavity. The RF signal picked up from the FP is used to detect the field phase and gradient in the cavity. HOMs

are used to damp the HOM power. Fig.1 is a SNS 6-cell cavity with four ports.
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(a) Equivalent circuit of a two-port cavity coupling system.
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(b) Alternative form of the circuit (a) without transformers.

Fig.2 Equivalent circuit of a two-port cavity coupling system at the reference planes of cavity side.

In the two-port measurements, the signals that we can measure are incident, reflected, and transmitted. The emitted
signal is defined as the reflected signal from the stored energy in the system when the incident signal is switched off. The
cavity can be equivalent to either a parallel or a series resonance circuit. The series circuit is comparatively simple to develop
for two-port cavity equations without beam loading. The cavity RF characteristics can be derived from this series circuit.
Assuming the impedances of signal source and load are real and given by R and R, as shown in Fig2, where R, L, C are the
resistance, inductance and capacitance of the SRF cavity. E is the equivalent voltage of generator in frequency w. For a high
frequency generator, the harmonic time structure is much smaller than the amplitude modulation by scale of several orders
(10 for SNS case). So the voltage amplitude can be written as E(w,?)=E(f)exp(iw?). then the circuit equivalent current is
I(w,H)=I(t)exp(iwf). The cavity voltage V. ‘s amplitude is

V.(o,0)

The cavity voltage V. can be related to the maximum accelerating gradient Facc when the beam bunch is accelerated at the



RF wave crest, and related to effective accelerating length d as well as the Transit Time Factor (TTF) Tr.

Viwnt)|T;
d

E(IC‘C (a)) =

The ¢, is at the flat top the RF pulse. Normally, the cavity’s intrinsic parameters are defined at the cavity’s resonance

frequency w,. The cavity stored energy U at wy is:

[ (a,,0)"
2

U(wy,t) = L (@,,0)|" = C
w, C

Vc(wo’t)r =

The cavity’s emitted power P,, dissipated power P, and transmitted power P, are:

2
Pe(a)07t) = nlzRG|I(a)Oat)|

2
Pd (a)ort) = Rc I(a)ort)|

2
Pt(wost) = n22RL|I(wO’t)|

The cavity’s intrinsic quality factor is cavity geometry and surface resistance dependent only:

0y = U(0,,1)/ Py (0,t) = @, L[ R, =1/(@,CR,) With @, = [I/(LC)
The external quality factor of the cavity input port is cavity and coupler’s geometry dependent only:

0, = 0,U(@,,1)/P.(@,,1) = @, L/ (n] R;)=1/(&,Cn R;)

The external quality factor of the cavity output port is similar:

0, = U(,,0)/ P(@y,t) = @, L[ (n3R,)=1/(0,CniR,)

The coupling coefficients of the input port and output port to cavity are also cavity surface resistance dependent:

{/); =0,/0,=P./P, =n]R,[R,
B, =0,/0,=P/P,=n;R, R,

The loaded Q; is:
w,L 0,
QL:R 2 2n
ctm R+ R, 1+, + B,
R +n’R ’R
or L RamRermB L, L1 _Laigep)
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The cavity shunt impedance R is:
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Normally the R/Q, is obtained by a cavity simulation code and written as R/Q. Please pay attention that, this R/Q is still
not yet used by accelerator physicist or a linac’s definition which should be:

2

V

4

T2 2 2
Racc/Q_ s _(R/QO)TT or :(R/Q)TT

CoU(ot,)

Based on above equations, the cavity equivalent circuit parameters can be expressed with the cavity parameters as:

oL
(R/ Q)
RO )
(00
g =-RQO_RO o
0, G

Note that G here is cavity geometry factor in the unit of resistance. R, here is not as same as the conventional series resonance
circuit where the R, denotes as the cavity surface resistance.
Table 1 lists the SNS medium beta cavity parameters and its corresponding equivalent circuit parameters.

Table 1. A SNS medium beta cavity parameters and its equivalent circuit parameters.

SNS medium beta Equivalent circuit
cavity parameters parameters
fo 805 MHz L 119.41 nH
R../O |279Q C 0.3273pF
0. 7.3E+5 n 4.07E-3
O, 1.26E+12 n 3.10E-6
Qo 8.85E+9 R, 68.2 nQ
d 0.682 m R;=Rs | 50Q
Tr 0.679
R/O 604 Q
G 177 Q
R, 20 nQ

For the circuit shown in Figure 2 (b), its differential equation relating to the current /(w,?), and voltage E(w,f?) is:

L

dl(dw’ D (2R + R+ n2R ) (@,1) + %f I(@,0)dt = n, E(a,1) (10)

This is the SRF cavity’s basic equation based on the series equivalent circuit. In the following sections, we will discuss the

solution of this equation for different driving signal E(w, ).



II1. Steady State Equations

If an incident power is Continuous Wave (CW), and its amplitude change reaches a constant after charging time of
100,/w,. At the steady state, the generator voltage E(w,f)=FEyexp(iwt) and the current /(w,f)=Ipexp(iwt). Substituting these

into equation (10), we find

L

2
M+R d](a)at) + ](Z’t) =l'a)n1EO exp(la)l‘) (n

dt? Tdr

Here R, = ”12 R, +R + nzz R, . The characteristic number - of the above equation is:

2= %L ~R,’ = 4RfQ§{l - 4;2 } =4£”R’Q; >0. (12)
L

in which & =4/1— 1/(4Qf) . The solution of the equation (11) is:

I(w,t) = nE, I {exp(ia)t)+Aexp{—&t—i(a)+i}}+Bexp{—&t—i(a)—ijt}} (13)
R +iol+- 2L 2L 2L 2L

ioC

Because the steady state current intensity |I (a),t)|2 is a constant, the 4=B=0 in equation (13). Then the circuit current

intensity /(w,f) can be written as:
n E(w,t)
. 0 o
funmeio[25]

w, @

I(w,t) = (14)

And the modulus of the current intensity /(w,?) is:

[(@,0] = T(@,01 (e,1) = m|E(@.1) ! (15)

R.(+5,+5) [w Q,OJZ

Above equation shows the cavity circuit current /(w,f) is decided not only by the incident power amplitude and cavity

intrinsic parameters (such as surface resistance, coupling factors), but also the frequency deference between incident power
(klystron) frequency w and cavity resonance frequency wy. The incident power from generator is: P, = |E (a),t)|2 / 4R; [5].

For a CW operation, we can ignore the time dependent part at this moment. The cavity dissipated power is:



2 _ 4P, P (16)

P,(@) =R |I(,0) P
(1+ﬂe+ﬂ,)2[1+Q§(”—”°J }
0, o

The transmitted power P, is written as

P(@)=nR, (.0 = P P, = BP,() (17)
1+, +ﬂ,)2[1 " Qi(a‘f—‘;’jj ]
The transmission coefficient 7’ can written as
T(w)= F (o) _ 4p.5, a (18)
(1+ﬂe+ﬂ,)2[1+Qf(s—a;)J ]

Normally, scattering transmission parameter S,; is used to measure the 7(w). The 7(w) can be written as:

S,,(w)=10logT(w)=10log 455, (dB) (19)
0 @,

(1+ﬂe+ﬂt)2 1+Q£(_(0j

29

At cavity resonance frequency:

_ 4ﬁeﬁt
Sy (@) = 1010g|:(1 B+ ﬂt)z } (dB) (20)

If Ao, is the cavity bandwidth, namely ;= ¢/ Awy, putting o=met Aw,/2, then for 0;>>1 or wp>> Aw
T(w,tAw, /2)=T(w,)/2
or
S, (0, T Aw, /2)=10logT(w,)—3 (dB). 21

This equation is used to measure cavity Q; in low power measurement, for example, by a network analyzer. The cavity

emitted power P, is:

P.(@)=niR,|(@.0] = 2P —P, = B.P,(®) @2)
(1+ﬂe+ﬂt>2[1+Qf(“’—“’°J ]
0,

This emitted power in a CW operation has no physical meaning when the RF generator is the power source. Because we are



transforming the RF circulator load R into the cavity side of the resistance n /’R¢. When the power source is switched off, we
will see from the next section that, the emitted power will replace the reflected power. Then the cavity’s stored energy is the
power source. The circulator resistance R is the heat load for the emitted power through the FPC transformer #;.

From equation (16), (17) and (22), the stored energy becomes:

0,P,() = 0.P.() = O,P(@) = U (@) = P9, _p, @)
(A+5,+5) 1+Q{“’ “’J
[0

0

Then the cavity accelerating gradient can be written as:

E ( ) |I(a) t)|T 4ﬂ (Racc /Q)QLPm
acc d wC » a) 2
d*(1+, +ﬂ)7 1+QL[ °j
@ @ (24)
_ \/(Racc/Qsto&(w) _ J(RHCC/Q)wéQ@Pe(w) _ \/(Rm/Q)on, (@)
d’e’ d’e’ d’
For w=w, equation (21) can be written as
E ()= | YR IQOP, \/(Rm/@QOP 2 (@,) \/(RM/Q)QEPe(wo \/(RQCC/Q)Q,Pt(wo) 05)
VN A+ B)
The reflected power P, is:
(=B, +5)’ +Q0[“’ “’j
P(@) =P, ~ (@)~ P() = = Zop, (26)
(1+B,+8)’ +Qo(“’—“’°j
®, o
According to above equation, the reflection coefficient I'.(w) for the input port can be written as
2
@ 6()
(1-B.+B) +Q0[ 0]
> P w0 o
L] == 27)

in

(1+8.+8) +Qo[‘“—‘”°J
[0}

0

For o=w,,



1—
[, (o) = w =S, (28)

I+ 5, + 5,

€9

The reflection coefficient I'(w,) of the output port is by switching “t” and “e” notes:

1 _
[ (®,) = M =S,, (29)

1+ 5, + 5,

From equation (28) and (29), the FPC coupling factor 5, and FP coupling factor f, can be expressed as:

B - 1+T,(w,)

T(w,)-T
(@) =T, () (for ffi1) 0)
ﬂ _ l_rt(a)o)

" [(o)-T.(a,)

A typical design for FPC is over-coupled (.>1), and the FP under-coupled (f,<1). Above equation can be used as long as
p=p+1. At this situation, the FP reflection coefficient S,; is less than FPC reflection coefficient S;;.
For other condition like when testing a SRF cavity vertically where the input power is limited, the FPC coupling factor f,

could be closed to 1 and FP coupling factor f, <<1:

,B _ l_re(a)o)
“ T(w,)+T.(@,)
T (for| B, = | < 1). @31
ﬂ — B t(a)O)
T (@) +T (@)

Using above results and equation (21), the cavity FPC external quality factor O, and the FP external quality factor Q, are:

= 4ﬂ’ . QL — 4ﬂz Q 1070A1521(d3)
1+8,+B, T(w) 1+B,+B "

= 4'88 . QL — 4:Be Q 10—0.1521(43)
1+ﬂe+ﬂt T(a)o) 1+ﬂg+ﬂ[ ¢

0,
(32)

0,

Equations (30) to (32) are used to measure and calibrate FPC’s and FP’s external Q at warm cavity or during the
prototyping to measure the external Q of HOM couplers. The cavity’s O, can be obtained by equation (7) then, but the error

would not be acceptable for a cold (2K) cavity when g>>1.

IV. Transient State Equations

If the incident power is pulsed wave, the cavity is in a transient state at the pulse start and end. As shown in the equivalent

circuit Fig 3, the pulse start is defined as RF switch on; and the pulse end is RF switch off. First we consider the pulse is a



square wave. For a standard square wave pulse, E(w,f)=Ejexp(iwf) after switching RF on, and E(w,#)=0 after switching RF

off.

n1R<

a. RF Switch on.

ni R R.

iy

b. RF Switch off.

Fig. 3 The equivalent circuits in transient state.

A. RF Switch On

For RF switch on, substituting E(w,?)=Ejexp(iwt) into equation (10), at steady state, the circuit current /(w,t) can be

obtained as equation (13).

For most cavities, their loaded quality factor Q; is more than 1000, even at room temperature. This means that the 1-¢ is

less than 1.25E-7. So, the A/2L can be approximately replaced by w,. Then we have w £ /2L = w £+ @, . The circuit current

amplitude related to the cavity voltage is a slow variation comparing to cavity frequency wy. So an approximation [6] can be

used to simplify equation (13). The boundary condition of the switch on is: I(w,0)=0 and [(®w,t—+o0)=Constant. Noting

that R, / L=w, / Q, , the circuit current /(w,7) during RF switch on becomes:

o o H {1 - exp{— ;SL t—iAa)t}}exp(iwt)

, (0]

mE,

{(Hﬁ +/3,)+1Qo(

I(w,t) =

It’s corresponding current module square |I (a),t)|2 is

|I(a),t)|2= 44, ; woj ]{Hexp[ ZL J 2exp[ ;;L Jcos(Aa)t)}Pz-
®

R.(A+p5,+5) [1+QL(

@,

Here Aw=w-w,. Based on this current, the cavity dissipated power P (w,?) is:

(33)

(34)

10



481+ exp[— %t - 2exp[— 2600 tjcos(Aa)t)
Py(@,0)= R |I(@,1) =—* L P, (35)
U+ +5) 1+Q§[“’—“’°J
w, @
Transmitted power P, is written as:
48,p, {1 + exp(— g tj -2 exp{— 262’ tj cos(Aa)t)}
P(o,)=nR,|l(a,0)] = : — P, = B,Pi(,1) (36)
(1+ﬁe+ﬂ,)2[1+QZ(w—w°j }
w0, @
The transmission coefficient 7(w, ¢) can be written as:
48,5, {1 + exp[— % tj -2 exp(— ;)0 tj cos(Aa)t)}
T, =210 _ : — 37)
P, (@,0) ] o
(+p+B)|1+0f =
w, @
4 2
and Tt =—BPr_|_ exp(— Dy tJ (38)
(1+8.+8) 20,

The cavity emitted power P, in this case has no physical meaning but relation to P, and P;:

. 4ﬂj{1+exp(—g‘:tj—2exp(— ;SL tjcoS(Aa)t)}P _h P () - B, Pl
in — Fetd\™> _ﬂ e

(l+ﬂe+ﬂ,){l+Qf(Za£] ] ’

0

P(w,t)=n}R;|(o,1)

(39

The equation (35), (36) and (39) display the P(¢), P(¢) and P.(f) have similar relation at pulse mode as equation (23):

45,0, [1 + exp(— g‘)tj -2 exp[— 2(2 tj cos(Aa)t)}

L L

) B,
(l+ﬂe+ﬂt4:l+QLz(wa)oj ]
®, o

(40)

a)U(a)at) = QOPd (Cl),f) = er(wat)e = QtPt(wat) =

11



Then the cavity accelerating gradient can be written as:

E. ()= 48,(R,../ OO, P, - {1 + exp(— %t} -2 exp(— %t} cos(Awt)}
[ONNON L L
d*(1+B.+B)—~ l:1+QL[O_a)] ] (41)
@ _ O _ Y
= PR SO0 (1) =2 (R / QIQR(1) =— (R, OO R(0)
For w=w,, equation (41) can be rewritten as:
E_ (@)= \/ 4B.(R,. | Q)0,P, (1) { exp(_ @ tﬂ
d (l+lB +ﬁt 2QL (42)
1 1 1
=R/ Q0P (D) == (Roee/ DOL(0) =— (R / DOE ()
The cavity’s stored energy change is:
dU df1 s ot ) L, & i
Because
@,
djI(e.0] KL eXp(_ 20, t]
dt

w, @

> { Do cos(Aawr) - exp( % t] + 2Aa)sin(Aa)t)}Pin
{ ( 0 o J } 0, o, 20,
RC (1+ﬂe+ﬁt) +QO 0

the dU / dt can be written as:

w; w,
U 20, ﬂe(l + a)zJ exp( 20, J
E(a), t) =

1 , Aw
cos(Awt) — exp[— 0 tj+2 sm(Aa)t)} 44
{ ) 0, '\ 20, ) "o "

w @, L

(I+4.+8) +Q{—j2

w, w

The cavity stored energy U(?) is:

12



i+
U(a),t):J.td—U(a),T)drz @ 1+exp _ %y —2exp| — D 4 cos(Awt) P,
0 dz— 0] w, : QL 2QL
oy (1+ .+ ) 1+Qf(—°j

w, o
:(Hw_é]QL(Hﬂﬁﬁt)%(w )

w 2w,
(45)
The cavity intrinsic quality is:
oU(o,t) ]
W)= = 1+—- 1+ 4, + 46
Oy (@) P (.0) 2%( pell SACRYED (46)

Comparing equation (46) and equation (7), we find there is a different factor of

14+ —= |. For w=wm,, the equation (46)
w

2
2w,

becomes (7).

The reflected power P, is:
du
P()=F,-F,)—— (- k(@)
dt
For w=w,, the reflected power could become as:

_ 45, _ @, 2_ 45, @ _ Wy
AT [l o ( 20, tﬂ 1+ﬂe+ﬁ,exl{ 20, ’J{l exp( 0, ’H
F.=F 7

(1+/3e+ﬂt){1 ep[ 2Qfﬂ

This equation can be simplified as following and is similar to the one-port equation except a 3; at the bottom.

2

P= I—L{l—exp(— ) zﬂ P, (@8)
1+ 4.+ 5 20,

B. RF Switch Off

After switch RF off, namely, after a pulse length of 7y, E(w,f)=0, the equation (11) becomes as:

2
dCL@0) o, dl@) (@) _

L
dr> Tdt C

0. (49)

As shown in Fig. 3 (b), the circuit frequency is dominated by cavity frequency w, after RF switch off. The initial boundary

13



condition of the switch off is:

nkE, explio,t )
H(@y,7,) = Dliey7y) 1_eXp(_ S Toj (50)
RA+p,+5) 20,
and I(wg,t—+0)=0.
Using this boundary condition, the circuit current /(wy,f) can be solved:
@, ,
I(w,,t) = I(@,,7,) €xp _2Q (t—1))—iay(t—1,) (51
L
And the circuit current module square |I (a),t)|2 is:
2 2 w,
|I(a%,t) =|I(a%,r0)| exp __Zg_(t_-TO) (52)
L

The cavity’s dissipated power P,, the transmitted power P, and the emitted power P, are:

P,(1)= Pd(a)oafo)exp|:_g(t_ro)}

L

F(t) = B(a,, ro)exp{— %(r - TO)} = B.F, (1) (53)

P.(0) =Pe(w0,ro>exp{—g<r—ro)}=/3€Pd<z>

The stored energy change is:

av, diof el > T oo, ] N
% (=L ) (@,7,) exp{ QL(f To):|— (+ B, + B)F,(t) ==F,(t) = F,(1) - K (?)
(54)
The cavity stored energy is:
v =" Y @ar = L., exp{—&(t - ro)} A VN0 59)
todr o @,

This shows that the equation (7) can be also used at this state.

The reflected power now becomes as

14



P.(t)=—P,(t)- B(t) —Z—‘Z(r) —P(1)= A1) (56)

The emitted power becomes reflected power which can be measured and also has the physical meaning in this state.

According above results, the £, is:

_ 4ﬂe(Racc/Q)QLPmF 2NN @y

AR IDAE D) _ R/ DLW _ (Rpe/ DOE®) _ Ry QIQL1)

d d d d
(57)

From equation (53), we found
101og P.(f) = 10log P.(t) = 10log P.(¢) + 101og(B./B,) = —k(t —7,) +b (58)

Here k=10-log(e)-(wy/Qr)=4.3430wy/Q;, and b=10log(Q/Q.) is a constant. This equation can be used to exactly measure the

loaded Q; at pulse mode by fitting transmitted power P, or the emitted power P,. We can define

LO_B. _ K? (59)
F@ B

Here K is a cavity intrinsic constant, which can obtain by measuring the ratio of emitted power P, and transmitted power P,

after RF switch off. Combining equation (59) and (38), the coupling factors are expressed as:

B = ’ T(@,,?)
ZK{I—ex (—262 tﬂ NT(@,,t)(K* +1)

(60)

. JT (@)

2K[1—e [—2“5 tﬂ JT(@,,0)(K* +1)

,
If the incident power pulse length T, >10Q;/w,, then 1 — exp(— ﬁ 7, ] ~ 1. Then equation (60) can be approximated as:
L

B = K*\T(@,,7))
© 2K —\[T(@,,7,)(K* +1)

B = VT (@,y,7)

2K —\[T(@,,7,)(K” +1)

(61)
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Figure 4: SNS medium beta cavity’s series circuit current /(¢), accelerating gradient E,..(¢), dissipated power P(f),

emitted power P,(#) (no physical meaning when P,,(t) is on), transmitted power P(f), stored energy change
dUu / dt(t) and reflected power P,(¢) in different drive pulse lengths. The amplitude of the incident power P;, is

60 kW, the frequency is 805 MHz. We used cavity parameters in table 1. So 7;=Q;/®w;=0.1435 ms.
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Figure 5: Combined plot from Figure 4 with pulse length of 157;.
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Figure 6: SNS medium beta cavity’s reflected power P,.(¢) and transmitted power P,() in the drive pulse
length of 10 7;. The amplitude of the incident power P,, is 60 kW, the cavity resonance frequency is 805
MHz. We used cavity parameters in table 1. So 7;=0;/wy=0.1435 ms. Af=f-f, is the frequency difference

between the drive klystron and cavity’s resonance frequencies.

As shown in Figure 6, the change of cavity’s reflected power P, waveforms indicates that when the cavity detuning is
large enough, the all incident power will be reflected back like incident square wave. The Af=805Hz corresponds about 65.7°
off resonance crest. The transmitted power P, reaches maximum at cavity resonance frequency w= w,. To maximize the

reflected or transmitted power peak can be used to judge the optimum tuning condition of the cavity’s frequency tuner or
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phase.

V. Decayed Incident Power

If the incident power is square wave pulse, and its amplitude change can be ignored in the time scale of 100,/w,, we can
use above equations to evaluate cavity performance. If the incident power’s amplitude change can not be ignored, we need to
modify above equations. One such of example is the IMW pulsed klystron installed at JLab CMTF by LANL. The total
capacitance of the capacitor bank in the Pulse Forming Network (PFN) of the klystron was limited. We saw a drop during the

2ms of driving pulse.

A. RF Switch On
For a pulsed incident power which is exponentially decay with the form P,(f)=P,exp(-2af), the equivalent voltage

becomes:
E(w,t)=E, exp[(— a+ ia))t]

The differential equation (11) becomes:

L

dCl@0)  , dl@n) 1)

" & (— a+i a))nlEO exp[(— o+i a))t] (62)

Using the slowly-varying amplitude approximation and the RF switch on boundary condition, the solution of the above

equation is:

H(@,0)= Catiohk, {exp[(—a+iw)t]—exp_—&r—{w—iﬂ}

(@’L-aR, —&’L+ %) +i(wR, —2awl)

_ (— a+i a))nlE0 exp(iat) exp(—at) —exp| — Do, iAa)t}

2 2
ORo (a_a_w+%j+{1_mj | 20,
ow, ©Q, ®, 0 o,

(63)

Here Aw=w-w,. Corresponding current module square |I (a),t)|2 is:
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4p, (az +o’ )exp(—2at){1 + exp{[hx - gzjt} -2 exp{[a - ZQSL jt} cos(Aa)t)} .,

[[(@,0)|" = . - . > (64)
O2R ( a _a+wo_wj {I_Zflj
0o, 0Q, 0 0,
Then the cavity dissipated power P(?) is:
45, (az +o’ )exp(—Zat) 1+exp [2a - %Jl —2exp| [(z - %Jl cos(Aar)
o, 20,
Py(o,t) = P (65)

020 [ff _a+%_sz+(1_2aj2
0
oo, 00, o o, 0, o,

and the transmitted power P((¢) is written as:

45,5, (az + w? )exp(—zat){l + exp{(Za - g’}:‘ -2 epra - 262) jt} cos(Aa)t)}

L L

) 2 2

20 [a _a+wo_wJ +(1_2aj
o, 00, © o, 0,

The cavity’s transmission coefficient 7(wy) is:

Flo,n) =

B, =B F (0,0 (66)

2 2 Wy
P(@,,1) bl o ){l_eXpKa_zQL H} 48,5 7(@){ { o VI

T(w,)=—"———""—= 5 o= —exp (a 0 ]t} 67)
B, (1) s 2[[052 a j ( 1 zaJ ] A+ 8.+ 5)

Oyo5|| —5— o

@, @0, 0, o,

a’+o;
@, @, @,

The cavity’s emitted power P,(?) is:

437 (a2 +* )exp(—Zat){l + exp{(Za - gj)r} -2 exp[(a - ;SL Jt} cos(Aa)t)}

P(o.0) = - . P,=pP (00 (68)

) 2 2
) ol @ a w, o 1 2«
e — T |
0o, 00, o o 0, o,

Here y(w,)=

Again, the emitted power here has no physical meaning. Combining equations (65) (66) and (68), the cavity stored energy

can be expressed as:
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oU(w,t) = Q. F,(w,1) = 0,P(w,1), = O,F(o,1)

48, (a2 +’ )exp(—2at){l + epr%{ - a)‘)jt} -2 expﬂa ~ % ]t} cos(Aar)
_ 0, 20, p (69)
ZK a a w o jz [ 1 20{}2] !
0,0 e el I o B
oo, 00, o o, 0, o

Then the cavity accelerating gradient can be written as:

48,(R,. /Q)(az + o’ )pm exp(—2at){l + epo2a - g‘)}} -2 exp&a - 263 jt} cos(Aa)t)}

L

E (o,t)=

o @|[@ e o o) (1 2a)
Oa’oz oo, 00, o o, 0,
AR QROPO) _ (Rooe! D@L _ (R Q3O PH)

do do do
(70)
The above equations show that the stored energy and accelerating gradient formula have the same form as normal square

pulse’s. At w=w,, the accelerating gradient equation can be rewritten as:

E, (@,,t)= PRy /Q)(aj oy )P’” [e xp(—at) —ex p[ ﬂ
sow (@ - @ | o[ 1 _2a) 20
o @ 0,0, 0, o (71
AR /OOEN) R/ DOL®) (R | QOR(1)
d d d
The cavity stored energy change dU/dt can be written as:
[20{ +J exp[ ( ] }cos(Aa)t) - exp( @ tj
25, (a2 +’ (1 + a)(i] O O O
0]
+ 2Aa)exp{ } sin(Awt) —2a exp(—2at)
du
_(a)at) = ) Bn
dt ZH a’ a o, a)j ( 1 2aJ }
[ONONO, - e Il
wo, 00, o o, 0,
(72)

Certainly the cavity’s stored energy is:
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L L
) 2 2 in
Qoe|| 4 d @ @) [1 2 (73)
oo, 00, o o, 0, o

P, (w,1)

28, (az + w? )QL 1+8,+8) exp(—Zat)[l + Z‘i]{l + epoZa - g"}} -2 expl:(a - 2(3 Jt} cos(Awt)}

U(w,t) =

@

:{Ha’_ngL(HﬁwLﬂt)

: 2w,
The cavity intrinsic quality factor is:

oU(wt) o

Q)= o) 20,

(1 + w—é]QL A+B.+5) (74
(4]

This equation shows a same format as equation (46). For w=w,, the equation becomes equation (7)

The reflected power P, is:
dU
Bl@,0)=F, exp(=2a1) - F(@,1) = F(@,1) == ~(@.1) (75)
t

B. RF Switch Off
After RF switch off, all the boundary conditions are as same as RF switch off in the normal pulse. All the equations of the
decayed incident power have same form as the normal pulse’s. But the physical quantities, such as /(zy) etc., should be

replaced by the value at the pulse end.

80
70 + a0 250
0r,=0.05
az,=0.1 200 -
------ ot,=0.5
= = 150}
a® o
100 |
20
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10} E
0 1 1 1 1 1 1 1 0 \
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Figure 7: The SNS medium beta cavity’s reflected power P,(f), transmitted power P(f), accelerating gradient E,..(¢) in the
incident power P;,(f) pulse length of 157, with decay rate of «. The amplitude of the incident power P;;=60kW. Drive

frequency is 805Mz, and 7= Q; /w;=0.1435ms.
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Figure 8: The SNS medium beta cavity M0S2 test data in JLab CMTF and comparison with the analytic fitting data in
the 0=0.3/7,=1/3.84 (ms)"' decay rate of incident pulse. z=1.153ms. The initial amplitude of incident power is P;,=216kW.

The E,..(Test) was calculated by one-port measurement equations.

The incident power decay rate a has a strong effect on the reflected power’s, transmitted power’s, and cavity gradient’s
waveforms. As shown in Fig. 7 the decay rate a is 5%, 10% and 50% of I/5y=wy/Q; separately.

The incident power used to measure SNS cavities at JLab Cryomodule Test Facility (CMTF) was a decayed pulse. After
fitting to the exponential decay form, we fund the decay rate is a=0.3/7=1/3.84 (ms)". The measurement data used in this

analysis were taken on the medium beta No. 8 cryomodule cavity #2 at 9:36AM on April, 8 2004
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(Waveform_ 040804 093645 MO8 _2.txt). Substituting this a and P;,=216kW into equations (66), (71), (75), (65), and (72),
we find that the analytic results of the reflected, transmitted power can fit the test dada very well as shown in Fig.8. The only
discrepancy is on the E,., the analytical data is about 3.7% lower than measured data at top. The test data was calculated by
one-port measurement equations [7].
Conclusion

The two-port RF cavity’s measurement equations based a series equivalent circuit can accurately measure the cavity’s
parameters without beam load, such as the cavity in a vertical Dewar or in a horizontal cryomodule. When coupling strength
B is closed to 1, these equations can be even used to measure the cavity’s intrinsic quality factor Q,. Substituting 3,=0 into
the two-port cavity equations, the two-port equations be simplified into one-port cavity equations [1-4].

In the pulsed mode operation, the cavity stored energy change dU/dt and FPC coupling are the cause of the reflected
power P, and transmitted power P,. Emitted power P, only has the physical meaning when the drive power is switched off. It
becomes reflected power P, and is external Q ratio of FP to FPC times of transmitted power P;. In practice, the incident power
P;, is not always square wave pulse. To measure cavity’s parameters more accurately, like loaded quality factor Qp,
accelerating gradient E,., the measurement equations need to be modified.

LRC series equivalent circuit is a good physical model to measure the electrical characteristics of superconducting RF
cavity.
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