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Abstract

The curvature-induced bunch collective interaction in magnetic bends can be studied using ef-
fective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. In
this paper, for an electron distribution moving ultrarelativistically in a bending system, the dy-
namics of the particles in the electron distribution is derived from the Hamiltonian of the particles
in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly
how the phase space distribution is perturbed by the effective CSR. forces. In particular, we study
the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudi-
nal CSR force, which arises due to the modification of the retardation relation as a result of the
energy-chirping-induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt)

in dispersive regions.



1. INTRODUCTION

In linear accelerators or linac drivers for free-electron lasers, often a linear energy chirp,
or a linear correlation between a particle’s energy and its longitudinal position in a bunch, is
imposed on a bunch by accelerating the bunch off-crest in an RF cavity. Transporting such
an energy-chirped bunch through a bending system allows the manipulation of the bunch
length via the pathlength-energy correlation in dispersive regions. For example, a high peak
current of an electron beam is often achieved by compressing the high charge, properly
energy-chirped electron bunches using a magnetic bunch compression chicane. When such
an electron bunch with linear energy chirp (d-z correlation) going through a dispersive
region (z-d correlation), such as that in a magnetic chicane, horizontal-longitudinal (z-z)
correlation, or bunch tilt, is introduced to the bunch distribution. Here we use the LCLS
BC2 chicane described in Ref. [2] to illustrate this z-z correlation. The chicane consists of
four dipole magnets of length 0.4 m with bending radius of 12.2 m. The two center dipoles
are 0.5 m apart, and the two side drifts are 10 m each. For an initial d-z correlation u = —40
m~!, Fig. 1 and Fig. 2 respectively depict the compression factor and the z-z slope of the
bunch, £(s), along the beamline. Note that at the end of the 3rd bend when s = 11.3 m,
&(s) reaches its maximum: £(s) = 118.

The coherent synchrotron radiation (CSR) effect on microbunching instability in a bunch
compression chicane has been extensively studied both analytically [1-3] and numerically
[4]. As an approximation, these studies are based on the longitudinal CSR wakefield [5-7]
obtained for a one-dimensional bunch, which is the projection of an actual tilted bunch
onto the designed circular orbit. The effective CSR forces were also analyzed earlier [§]
for a nontilted bunch. Compared to the case of a nontilted or projected bunch, the x-
z correlation of the bunch distribution modifies the geometry of particle interaction with
respect to the direction of particle motion, which consequently modifies the retardation
solution and the CSR interaction force. The numerical results of the full two-dimensional
effect, which account for the z-z correlation of the bunch distribution in configuration space,
were first presented by Dohlus [9]. In this study we focus on the analysis of this bunch tilt
effect on the CSR interaction.

Since the variation of bunch tilt depends closely on the beam phase space transport along

the beamline of interest, to study its effect on the curvature-induced collective forces, we



need to start from a more general approach, i.e., to formulate the bunch collective interaction
on a curved orbit as a self-consistent dynamical system for an arbitary initial phase space
distribution. This is done by first developing the equations of motion in Sec. 2 based on the
Hamiltonian of the particles in the bunch distribution, and then constructing the equation
for the evolution of the phase space distribution in Sec. 3, where the role of the effective
collective forces on the perturbation of the phase space distribution is explicitly shown. We
then focus on the study of the CSR interaction for a 2D energy-chirped bunch on a circular
orbit with the zeroth order approximation, which includes the formulation of the retarded
potentials (Sec. 4), the solutions of the retardation relation (Sec. 5), and the analysis of the
effective longitudinal CSR force (Sec. 6). The analytical results obtained in this paper are
in good agreement with Dohlus’ numerical results for a moderately tilted bunch.

It is well-known that when a charge distribution moves ultrarelativistically along a curved
orbit, the particles experience the “centrifugal space-charge force” F¢SCF in the radial di-
rection [10], as a result of the non-perfect cancellation between the electric and magnetic
fields in the Lorentz force. Meanwhile, the particles with radial offset from the design orbit

”? FNSCFin the longitudinal direction [11].

also experience the “noninertial space-charge force
The singular contribution of nearby particle interaction to these forces could cause difficul-
ties for one to analyze the curvature-induce collective interactions for a tilted bunch. In
this paper, this difficulty is eased by using the canonical formulation developed in Ref. [12],

FCSCF and

which exhibits explicitly the anti-correlation (or cancellation) of the effects of
of the potential change (which is partly contributed by FN5CF) on the bunch transverse
dynamics and microbunching process. Consequently, the effective CSR forces, which are
the net residual of this cancellation, are recongnized as the source of perturbation to the
phase space distribution. Compared to F5¢F and FNSCF the effective forces are usually
dominated by non-singular contributions of particle interactions.

Even though in this paper our focus is limited to the “steady-state” longitudinal effective
force for a tilted bunch, the basic equations developed in Sec. 2 and Sec. 3 provide a frame-
work for further self-consistent analysis or simulation of the CSR effect on the dynamics
of an energy-chirped bunch in bends. Moreover, for a tilted bunch, the approach used in
Sec. 4-6 can be straightforwardly extended to the “steady-state” transverse effective CSR

force, as well as to the effective forces in the transient regime involving entrance to and exit

from a circular orbit.



2. FORMULATION OF THE CSR PROBLEM AS A DYNAMICAL SYSTEM

Our goal in this section is to formulate particle dynamics for an electron distribution
moving ultrarelativistically on a curved design orbit under collective interaction in free space
(impedance effects due to boundary condition are not included). With a brief discussion of
the dynamics in the Cartesian coordinates in the laboratory frame, we review the equations
of motion based on the canonical formulation [12] in the Frenet-Serret coordinates along
the design orbit, using pathlength s as the independent variable. Then by writing both
the equations of motion and the effective forces in terms of our chosen beam phase space
parameters, we formulate the problem as a dynamical system (see Eq. (22)). This provides
the foundation for setting up the equation for the evolution of the phase space distribution
(see Sec. 3), and allows us to analyze the curvature-induced effective forces for an energy-

chirped bunch in magnetic bends (Sec. 4-6).

2.1. Dynamics in a Cartesian Coordinate System

Consider an electron bunch moving relativistically in an external electromagnetic field
and undergoing collective interaction. For a fixed Cartesian coordinate system, the position
vector is r = Xi+ Yj+ Zk. The dynamics of a charged particle (with respect to ) in the

bunch can be studied using the Hamiltonian

H= \/(ch —eA;)? + (ePy —eAy)? + (cP, — eA,)? + m2ct + ed. (1)
Here P is the canonical momentum conjugate to r, and
d = q)ext + (I)col, A = Aext + Acol (2)

are the scalar and vector potentials on the charged particle, with (®**, A®*) the potentials
related to the external design fields, and (&', A®!) the potentials due to collective elec-
tromagnetic interactions among particles in the charge distribution. Let ro(¢; () denote the
trajectory of a source particle, with ¢ = (r(0),£(0)) the source particle’s initial phase space
parameter, and let fo(() be the initial phase space distribution of the electron bunch. From

the retarded potential generated by a single particle [13],
At(z) = 2e/dTV“(T)9[x0 —1o(7)]6{[z — r(7)]*} (3)
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for V#(1) = (7e,~t), one can obtain the collective potentials (in Lorentz gauge) on a test

particle generated by all the source particles in the electron distribution,

Ol (r, 1) = 26c/dCfo(C) /dtr Ot —t.)0 [cz(t —1,)? = [r —ro(tr, C)|2]

4
ACOl(rat) = 26/dCfO(C) /dtr I‘.(tr) 9(t - tr) 0 [CQ(t - tr)z - |I‘ - rO(traC)|2] ’ ( )

where 6(x) is the Heaviside step function, and 0(z) is the Dirac-delta function.

2.2. Dynamics in the Bunch Internal Coordinate System

We now let the pathlength s along the design orbit be the independent variable, and
summarize the equations of motion in the Frenet-Serret coordinates [12]. Here the position
vector of a particle is

r(x,y,s) =xey(s) +yey(s) + es). (5)
Let H be the canonical energy conjugate to ¢, and P, and P, be the transverse canonical

momentums conjugate to  and y. The Hamiltonian for an electron in the bunch is then
H(ZL’, Pwa Y, Pya ta _H; S) = _(1 + ng)

H — e®d®)\? 2 2
x| Az 4 S +J <7€> - (m - EASP) - (Py - %Af’) —m2e |, (6)

C

where kg(s) = 1/Ry(s) is the curvature of the design orbit at s, and @ and A® are the

collective interaction potentials in Eq. (4) converted to the Frenet-Serrent coordinates using

Eq. (5):
W) (z,y, 5,t) = (e (x,y,5),t), A (z,y,s,t)=A%r(z,y,s),1). (7)
Here the Frenet components of A®)(z,y, 2, 5) are

AP (z,y,t,5) = AT e,(s), AP(z,y,t,5) = AD ey (s), AP (z,y,2,5)=AT . ey(s).

(8)
Normalizing the Hamiltonian in Eq. (6) by yomc = Ey/c, with Ey being the design beam

energy, one gets

?-N[(xa ’ﬁxa Y, 753/7 Ct? _‘EL 8) =
(1 + kox) | A% + AD 4\ — 32 — (P, — AT2 — (P, — A2 — 52| (9)




with

(8PP} = —— (W PP (10)
and
(i, A0, 60} = 0 fart 40, a0} (1)
0

for A™ being one of A

m’y7s.

A canonical transformation from (ct, —H) to (z,dy) can be performed using the following

generating function [14]

F3(_H7275):(8_Z) H2_762+Za (12)
which gives
OF: =
Oy =——— =\H>— 7"~ 1
0z
oFy; s—z
ct = ——% = 13
OH Bu (13)
- -~ O0F;
K= ——
\ A 0s
for By = /1 — (7H)~'. Let us define the normalized potentials with variables changed
according to Eq. (13) as
D, Ay, AN O, s) = {0 AW (1 At t=—""2) (14
{ ) 721,?"45 }(x,y,z, Has) { ) m,y,sa( —|—l€0$) s } r,Y,s, BH((SH)C ) ( )

where A = (14 kx) A% is the canonical external longitudinal vector potential. Applying
Eq. (9) to the new Hamiltonian K in Eq. (13), and expanding the square root in Eq. (9) to

the 2nd order of the small quantities

5H7 &)7 (75$ - Am); (75y - Ay)a 1/707 (15)

we get the approximation of K

K(ZU, 75$7 Y, ,ﬁya Z, (5H7 S) =

_"ZlS*Xt — /ﬁ}ox(l + 6H) — (1 + HUZU) [(As — (I)) — 5 (16)
Since to the second order, for B, = /1 — 752, one has
1 1/2
og) = |1— ~ 1
nl6n) = 1= ] = (17
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the potentials in Eq. (16) can be approximated from Eq. (14)

{ti), Am,yys, fli"t} (x,y,2,5) ~ {&)(F), ACE)’S, (1+ ngx)fii"t} (az, Y, 2,1 = Sﬁ;;) ) (18)

The Hamilton’s equation for (x,ﬁm,y,ﬁy,z,ég) can then be obtained after applying the
potentials in Eq. (18) to K in Eq. (16):

([ dx ~ ~
i (14 koz) (P — Ay),
dPs _ 8.%1?’“ A 5 (7595 — AZ)Z + (ﬁy — Ay)Z
= |2 w1+ 6] 4 (A= ) - .
A, — Bo®) -~ - 0A, - - 0A,
+(1 + Kox) [T + (P, — Ay) 5.+ (P, — Ay)—x
dy ~ ~
ds = (1 + ko) (Py - Ay)a (19)
dp, 0A™ A, — Bp®) = - 0A, = < 0A,
— = — 1 —A —A)—
dz _
ds fo®
dH  9A™ A, — B®) -~ ~ 04, - < 04,
W o T [ P A
Let us use the external canonical vector potential [15]
B , 72 y?
A% (z,y,8) = — [no(s)x + (HO(S) — /ﬁ(s)) 5t /il(s)?] +- (20)
to represent, the external dipole and quadruple magnetic fields
ext Ey
BY = —[ri(s)yes(s) — (ko(s) +ri(s)z) ey(s) ]+ . (21)

We can then obtain the equations of motion for the noncanonical dynamical variables
(x,2',y,y',z,0) by rewriting Eq. (19). Since we are interested in the perturbation of
the effective CSR force on the linear optics, by keeping only the linear terms for the design

optics, we get ;
X

—-=Y(X5) = M(s)X + FUI(X, 5) (22)



for

z 0 1 0 00 0 0
' —k2(s) 0 0 0 0 ko(s) F,

x| V| ome=] Y P g 2| Y (s
Y 0 0 —k(s)00 0 F,
p —ko(s) 0 0 00 0 0
on 0O 0 0 00 0 Fy

Here M(s)X in Eq. (22) reflects the nominal linear optics, with the horizontal and vertical
focusing strengths k,(s) and k,(z) of external magnetic fields satisfying k2(s) = k1(s) —r3(s)
and k2(s) = —k1(s). The term FUY1(X,s) contains the normalized effective CSR. forces as

expressed in terms of potentials:

2 i z (A, — Bo®
puxﬁ>:(1+m@[m@g_%@H4L+%@J_Bﬁag
(04 04N (oA, 04,
Y e By 99 KoT ER
; A, — @
Fy(X,s) ~ (14 kox) [(1 + nox)a(sa—yﬁo) . (24)
+a 0A, 04\ _ (04, - 04,
T Iy o s KoL P
3 ~ a(As — 50&)) /afix ,8Ay
k Fu(X,s) ~ (14 kox) 5 +r o ty =

Note that for U = A, or fly, the expansion

v ,0U 80U U U

= "o

o TV e T (25)

is used in deriving Egs. (22)-(24). In Eq. (24) higher-order terms were included so one can
compare the orders of magnitude between the dominant terms and the negligible terms.
Let f(X,s) denote the phase space distribution function of the bunch. The super-
script [f] of FUI in Eq. (22) shows the functional dependence of the effective CSR forces
on f(X,s) through the dependence of the scalar and vector potentials on the charge



phase space distribution. Let N be the total number of electrons in the bunch; then for
dX =dxdz' dydy dz dog,
/ F(X,s)dX = N. (26)

Instead of fy(¢) with ¢ = (r(0),r(0)) in Eq. (4), here we use the initial bunch phase space
distribution fo(¢) with ¢ = X|;—¢. The particle number conservation then requires fy({)d(¢ =
f(X,s)dX for an infinitesimal initial phase space volume d(. This enables us to write the
the collective interaction potentials in Eq. (4) on a test particle in terms of f(X,s). Using

Eqgs. (4), (7) and (18), and changing variable from ¢, to s, via t, = [s, — 2(s,, ()]/Boc, with

dr;‘(sr) = [1 il HO(ST):ET, [1+ ko(sr)z] e5(sr) + @) ea(s,) + yrey(s,) | (27)
Sy 60

we have

r d(z,y,2,5) = 2?;:“8 /dsr/erf(Xr,sr) 1+ Ko(sy)x,]

x0[(s = sr) = (z = 2)] o{[(s = ) — (2 — 2)]* = B[x(w, v, ) — v (r, Yy, 50)]7}

Az, y, 2 5) = 2ﬁre/dsr/dX,«f(X,,s,){(l—l—lig(s,)xr)es(s,)+x'Tex(s,«)+y;ey(s,«)}

x0[(s = sr) = (z = 2)] 6{[(s = 5) = (z = 2)" = Bs[x(x, . 8) — 2 (0, 4, 50)7},

\

(28)
with r. the electron radius, X, = (x,, 2}, y,, Y., 2, 0g,) representing the source particle’s
phase space variables at the retarded pathlength s,, and r(z,y,s) and r(z,,y., s,) the po-
sition vectors (see Eq. (5)) for the test and source particles respectively. In Eq. (28), the
Dirac-delta function and the Heaviside step function together imply that the source particle’s

retarded longitudinal position is determined by
2y = 20 (T, Y, 2, 83 Ty Yry Sr) = 2 — S + Sp + Bolr(z, vy, s) — r(zr, yr, S1r)|, (29)

which imposes the retardation relation

|I‘(a’,‘,y,8) _r(x“y?"’s?")| (30)
&

ty=t—

on the interaction between particles.



Another familiar expression for the potentials, with X = (x,, 2., y,,y.), is

r ~

B(w,y,2,5) = ¢ [ ds, [ dX e [1+ ol )]
0

f [vazr(xayazaS;xrayrasr)a(SHﬁST]
|r(x,y, S) - r(xrayra Sr)|

X

Alr,y,z,5) = ij"e [ dse [ X, dom, [(1+ rols)2,) es(s,) + 2 eals,) + vley(s:)]
0

» f [X,L,Z,«(x,y,z,s;xr,y,,sr),(SHr,sr]

\ |r(x,y,s) _r(xrayrasr”

(31)
Here the potentials depend on z only through z,(x,y, z, s, 2., y, s,), which makes the study
of the longitudinal effective forces easier in Sec. 6.
Note that for a particle with kinetic energy E = (1 + 0g)FEp, using H = E + e® and
Eq. (13), one has
5H:5E+<i>—2i%2. (32)
The reasons for choosing the special combination X = (z,2',y,y', z,61)T as the dynamical
variables in this paper are: (1) for vanishing effective CSR force FIY], we restore the nominal
design optics from Eq. (22); (2) the phase space distribution f(X,s) can be directly related
to many of the quantities measurable in laboratories (see Appendix B.2); and (3) this set
of phase space parameters allows the cancellation effect to be explicitly manifested in the

equations of motion, as can be seen in the first term of F}, in Eq. (24) (see Ref. [12, 16] for

more details).

3. THE EVOLUTION OF PHASE SPACE DISTRIBUTION

In this section, the evolution equation for the charge distribution in our chosen phase
space is set up based on the dynamical equations formulated in Sec. 2, which is further
transformed into an integral equation for an initially energy-chirped bunch. The relations
of the phase space distribution f(X,s) with the physical quantities observed in laboratories

are also listed.
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3.1. Setting up the Evolution Equation

Since we choose (z,z,y,y, 2,0g) as the phase space variables, which are different from
(x,2',y,y', 2,0E) as usually used in the Vlasov equation for many other accelerator physics
problems, we need to set up the phase space evolution equation for the particular dynamical
system described by Eq. (22).

From Eq. (22), we have the phase space variables at s and at s + As related to the first
order of As by

Xi = X(s+ As) = X(s) +Y(X, s)As. (33)

Note that just as in the case of the Maxwell-Vlasov equation, here the phase space volume

is conserved to the first order of As, namely,

dX; = [1+TY(X,s) As]dX = dX, (34)
where from Eq. (22)
6 9Y;(X, s)
rix, s) =S —=—"2 —. 35
(X, ) ; ax, (35)

Using Eq. (34), and the conservation of the number of charged particles in an infinitesimal
phase space volume

AN = f(X,s)dX = f(Xy, s+ As)dX, (36)

one gets the Vlasov equation for the dynamics given by Eq. (22)

of
oxX;

af &
g +ZY;(X78)

=1

0. (37)

3.2. Integral Equation for an Energy-Chirped Bunch

Following the analysis in Ref. [2, 3], we now construct the integral equation using our
phase space evolution equation in Eq. (37). This integral equation shows how the particle
distribution in the normalized phase space, which is invariant under design linear optics, is
perturbed by the effective CSR forces.

For a bunch with an initial energy chirp 6 = uz (u < 0 for a bunch under compression)
imposed by an upstream RF cavity, let p(Xo, s) be the particle phase space distribution for
the normalized phase space variables Xy, as introduced in Appendix A. From Eqs. (A7) we
have

f(Xa S) = p[XO = R_I(S)Xa S]v (38)

11



and from Eq. (A6), we have

af(X7 S) ap(X();S) -1 ap(X()aS)
= — R M(s) X
Ds Ds [ () M(s) ]l I(Xo);
and
O1(X,5) iy Op(Xoys)
TP R 202
Therefore the Vlasov equation for p(Xj, s) can be obtained from Eq. (37):
9p(Xo, 5) . 9p(Xo, 5)
’ R (s) FYI(R(5)Xq,5)]; =0
S (R s) PR(s) X)) G2 —0,
which is equivalent to the integral equation
S op( X, , St
pX0,5) = p(X0,0) — [ ds, R (50) FUIR(s,) Xo, 7)) 20,
0 3(X0)l
Denoting X, = R(s,)Xo, and using
ap(X(]aST) af(XTasT)
——— =R St)lii T awv N
o), o),
we can convert Eq. (42) into an integral equation for f(X, s)
0f(Xr, sr)

F(X.5) = fO(X, 5)—/OSdST[F[f](XT,S L AN

for X, = [R(s; — s)] ' X with R(s, = s) = R(s)R '(s,). Here

FOX,5) = p(R7}(5)X,0)

(39)

(40)

(42)

(43)

(45)

gives the phase space distribution under nominal optical transport, and the integral in

Eq. (44) gives the impact of the effective forces during 0 < s, < s on f(X,s). For small

effective CSR forces, the perturbation on the nominal phase space distribution is yielded

from the first iteration of Eq. (44):

IfO(X,,5,)

Fs) 2 O — [, P00 2

(46)

The evolution of a small longitudinal density perturbation on a stable distribution, and

the relations of our phase space distribution f(X,s) with measurable quantities, are given

in Appendix B.

12



4. RETARDED POTENTIALS FOR A 2D ENERGY-CHIRPED BUNCH ON A
CIRCULAR ORBIT

In the previous sections, the equations of motion and the phase space evolution equation
are laid out for a charge distribution being transported along a curved orbit by an external
EM field, and the perturbation of the charge phase space distribution is expressed in terms of
the effective CSR. forces, or the curvature-induced bunch collective interaction forces. Here
we are interested in studying the effect of bunch tilting (z-z correlation) on the effective
CSR forces when an energy-chirped bunch (6-z correlation) goes through a dispersive region
(-0 correlation) for processes such as bunch compression in a magnetic chicane.

Our first step is to analyze the retarded potentials for an energy-chirped bunch under
zeroth order approximation. This result will then be used in the following section for the
analysis of FI/”)in Eq. (46), which arises when one takes the first order iteration in solving
Eq. (44). Here the zeroth order approximation implies that an initial phase space distribution

is transported through the chicane under nominal optical transport
f(Xp,50) = FOX,,8,) = p[R ™ (50)X,, 0] = p(Xr0,0), (47)

where X, and s, are respectively the phase space variables and pathlength parameter for
the retarded distribution f(X,,s,) in Eq. (28), and X,y = R™'(s,)X,. The effect of energy
chirping is included in the parameter u in R(s) of Eq. (A5). For simplicity, here we consider
only a two-dimensional charge distribution in the y = 0 plane, with X = (z,2’,0,0, 2, §y)7

and X, = (z,,2.,0,0, 2., dg,)T. With the change of variables from X, to X,,
X, = [!L’r, 1‘;, 0,0, z, (6H)T]T = R(ST‘)XT‘(]) (48)

and using Eq. (47), the collective potentials in Eq. (28) become

d(z,2,5) = 2?;:“8 /ds,«/ero p(X;0,0)wo(Xro, 57) 6(P) 0(Q)
, (49)
5 2
Az, 2,s) = % / ds, / X0 p( X0, 0)W(Xr0, 5,) (P) 0(Q)
where
wg(Xrg,Sr) = 1"‘/‘?30(51")371"()(1"0757*) : (50)

W(Xr(); Sr) - [1 + HO(Sr)xr(Xrﬂa Sr)]es(sr) + x;(Xr()a Sr) ew(sr)

13



and P, @ in Eq. (49) are

{ P(z, 2,5, X0,8) = {(s—s,) — [z — 2.(Xy0, 5,)]}% — B2{x(x,5) — |2, (X,0, 5), 5] }2 |

Qz, 2,8, X0,5) = (s—8,) — [z — 2(Xy0, 5)]
(51)

In Eq. (49), §(P) may contain both retarded and advanced solutions, and (@) ensures the
selection of only the retarded solution. For interactions within a single magnetic bend when
both s and s, are on the same circular orbit with radius Ry = 1/ky, one has [r(z,s) —

r(z,,s.)]* in Eq. (51) as

[x(z,5) —r(z, 5] = <1 + Ri()) <1 + %}) <2Ro sin 82_R?>2 + (z — z,)% (52)

As a result of the initial linear energy chirping along the bunch length, in dispersive
regions, the bunch has a horizontal-longitudinal correlation in configuration space. Using

Eq. (48) for the source particle, with R;;(s,) given in Eq. (A5), we write

Zr (X7‘07 Sr) =2z + R55(3r)zr07 Ly (X7‘07 Sr) =T + 7215 (Sr)zrﬂ (53)
with
zr1 = Rsj(s:)(Zr0)j, @1 = Ruj(s)(Zro) (54)

for Z,, representing the intrinsic transverse and energy offsets:

ZT‘O — [xr07 x:«oa 07 07 07 (5H)TO]T- (55)
Similarly, we write
2(Xo,8) = 21 + Rs5(8)z0, (X0, 8) =21 + Ri5(5)20 (56)
with
21 = Rs;(5)(Zo)j; o1 = Ruy(s)(Zo); (57)
for
ZO = [1'0,1'6,0,0,0, ((SH)O]T (58)

We then denote the bunch tilting factor as

_ R15(8) _ ’LLRH;(S)
R55(8) 1+ UR56(8) ’

g(s) gr = 5(57")' (59)

For a linear bunch with zero emittance and uncorrelated energy spread, Eq. (53) yields the

slope of the bunch at s,: z,./z. = &. The “on-orbit” case for a projected bunch studied
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earlier [5—7] corresponds to zero energy chirping u = 0, when the tilting factor £(s) = 0 for
all s.

For a test particle at (z, z, s) to receive fields generated by source particles at s,, knowing
the source particles’ intrinsic transverse and energy offset Z,y, we need to solve the initial

longitudinal position z,y of the source particles by evaluating §(P) in Eq. (49). Let us define

1
As=s—5,, Az=2z—TRs5(s)20, and (Z,AZ A3) = Rl (2, Az, As) (60)
0

for a constant curvature ko = 1/Ry. We also define & and é as

Ty X RU o R()

Ty = ?07 T = ?07 ér(s) = 6(&‘)@7 6(8) = 6(8)®7 (61)

which are invariant when the beamline is under mirror reflection Ry — —Ry and x — —x.
Thus when both s and s, are inside the same magnetic bend with radius Ry, using Eq. (52),

P in Eq. (51) becomes a quadratic function of Az
P = R (aAZ* — 2bAZ +¢) (62)

with a, b, ¢ given in Appendix C in terms of (z, 2, s) and (Z,q, s,,). Thus we have for b*—ac > 0

§(AZ — AZ)) + §(Az — Az0))

0(P) = 63
(P) 2R3\/b? — ac (63)
with AZ& the roots for P = 0:
b+ Vb —
AZH) (2, 2, 8, Zng, S1) = SEVY A (64)
a
This leads us to the solution of Z,g
520 — 2t”) + 8(Z0 — 7o)
§(P) = —= r . L b’ — ac > 0), 65
(P) 2R% | Rs5(s,)| V% — ac ( ) (65)
in which “
z — Azl* 7—bF Vb —
Z,Eoi)(x,z, S; Zpoy Sp) = : c L ® i ac (66)

Rss(sr) aRss(sr)
The expression for zZ2) can be obtained by substituting Eqs. (C1) and (C8) into Eq. (66):

Z(i) _ —A3(1 — éTAE/Q) - (éri" —Z) = (2 — éri"rl) F Vwo + wy (67)
r0 — ~ .
(1= &) Rss(sy)
In cases of moderate or strong tilting, ér > 1, it is convenient to use
1 1
X(s)==—, and x,=—=. (68)
&(s) &
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With both the nominator and denominator multiplied by ¥, Eq. (67) becomes

(%) A3(Xr — A5/2) + (& — Xr2) — (Zr1 — XrZr1) £ sign(X;)y/(wo + wl))%?«
ZT‘O — N ~
(1= xP)ultis(sy)

with (wg + w1)X2 given by Eq. (C9), and Rig(s,) = Rys(s,) - sign(ko).

We now assume the initial normalized phase space distribution p(X,q,0) takes the form

p(X70,0) = Npin(Zro) Mo(2r0), (70)

with NV the total number of electrons, A\g(z,9) the initial longitudinal charge density distri-

bution function and pi, (Z,0) the initial intrinsic transverse and energy distribution function,

/ pin(Zro)dZro =1, and / No(2r0)dzo = 1. (71)

For simplicity, let us consider only the “steady-state” situation [17] when the potentials in
Eq. (49) on a test particle at s in a bending magnet are contributed mainly from s, € [s1, s3],
or As € [s — s9,5 — s1], with s; and s, the pathlengths at the entrance and exit of the same

bending magnet. This geometry implies

e (5,) - e5(5) = —ey(s,) - e, (s) = sin - ;05’“,
es(s,) - es(s) = ey(s,) - e,(s) = cos i ;:T

We now apply Egs. (65) and (70) to Eq. (49), and let dZ,y = dzodx,,d(dp)r0. Defining

in Zr
Wz, z,8; Zro, Sr) = pin(Zro) (72)

[ Rss(s,)| VOE —ac’

one obtains from Eq. (49) the potential terms shown in Eq. (24)

( 5 Nr,
O(z,2,5) = PolNT [/ ds,dZ, W(x,z,s;ZrU,sr))\(z,Ear))HO(Z,E(J{),ZTO,ST)
Yo|Ro| o+
+ / ds,dZ. W (x, z,8; Zro, Sr) A(zﬁa)) Ho(zﬁa), Z0, sr)]
o-
_ . 2N,
[As - BO(I)] = BO 4 |:/ dsrdZTO W(]I,Z, 53 ZrOasr) )‘(Zﬁa—)) Hs(zﬁa_)azrﬂasr)
’YO|R0| Q+ (73)
+ / dsydZ.g W(x, z, 8; Zro, Sr) )\(Z,EO_)) Hs(z,(,o_), Z0, s,«)}
o-
~ BN, [ (+) (+)
Amaa = deZTW77;ZT7T)\r erazrar
(x,z,s) Y . d5rdZyo (%, 2, 8; Zroy Sr) M2po ) He (200" s Zr0,y Sr)
+ / ds,dZ. W (x, z, 8, Zro, Sr) A(zﬁa)) Hw(zﬁa), Zy0, sr)]
\ Q-
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with 25 = |R0|Z,%) given in Eq. (66), and

( R r)~Tr R i\ or Zr 1
Hy (20, Zro,57) = 1 + 15(5r) 20 +R 15(51) (Zro);
0

. As _
HS(Z,«O, Z,«O, S,«) = [R25(87~)Z7«0 + jo (ST)(ZTO)j] Sin F — Ho(Z,«(), Z,«(), 8,«)(1 — COS AS) .
0

. As
Hy(20, Zro, 5p) = —Ho(2r0, Zyo, 5r) sin T + [Ras(s1) 20 + Raj(5r)(Zp0) ;] cos As
\ 0

(74)
In Eq. (73), the range of phase space integration, Q*, are set to ensure the existence of

solutions for Eq. (63) and to exclude the advanced solution:
QF: {t* —ac>0 and QF) = As+ 2, — Az > 0}, (75)

with 2., and Az given by Eqs. (54) and (64) respectively. Discussions of conditions in
Eq. (75) can be found in Appendices C2 and C3.

5. RETARDATION SOLUTIONS FOR VARIOUS LEVELS OF BUNCH TILTING

In Eq. (65) of Sec. 4, the retardation relation is solved for the CSR interaction on a circular
orbit with curvature k¢ and radius Ry = 1/kg, where the initial longitudinal position of a
source particle z.q is solved in terms of the bunch internal coordinates (x, z, s) of the test
particle, the initial intrinsic offset 7.y, and the retarded pathlength s, of the source particle.
With Z, in Eq. (56) denoting the initial internal longitudinal position of the test particle, and
0.(s) and o,(s) the longitudinal and transverse rms bunch size at pathlength s respectively,

we can now list the retardation solutions for various levels of bunch tilt under the assumption

of Eq. (C3).

5.1. Nontilted bunch: v =0, &, =0

Setting & = 0 and Rs5(s,) = 1 in Eq. (67), and assuming

o(5)
| Ry

(& — 21)*/(A5)" <& +dp,  oOr < (A5)% (76)

we get the retardation solutions (Z,); and (Z.)2 from Eq. (67) for As > 0 (back-front
interaction),

(Zro)1 = 25 =~ (2 + 2A5/2) — A5 /24 — (2,1 — £,1A5/2), (77)
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and for As < 0 (front-back interaction)
(Zr0)2 = 25 = (2 + 2|A5|/2) + 2|As| — |A5P /24 — (2,1 — £,1]|AF]/2). (78)

For a bunch with the intrinsic horizontal emittance and uncorrelated (canonical) energy

spread small enough to satisfy
O(%1, 21, 801, 2r1) < |AS, (79)
the solutions in Eqs. (77) and (78) reduce to
Zo — (Z0)1 ~ A5 /24 (As > 0) (80)

and

(Zr0)2 — 2o =~ 2|A5| — |A5]*/24 (A5 < 0). (81)

Here Eq. (80) indicates that for a nontilted bunch, the back-front (s, < s) interaction is for
a test particle at bunch head to receive interaction generated by a source particle at bunch
tail (Z,0)1 < Zo. On the contrary, Eq. (81) indicates that the front-back (s, > s) interaction
is for a test particle at bunch tail to receive interaction from a source particle at bunch head

(Z:0)2 > Zo. Note (Z,0)*) is excluded because in Eq. (75) Q") < 0 (see Appendix C.3).

5.2. Small Tilt

Let us assume O(#) < (As5)? < 1 and consider a small tilt when |ac|] < b%. The
retardation solutions can be obtained by applying this small tilt condition to Eq. (67). For
As > 0, the first solution yields

~ L 7+ 2A5/2) — A5 /24 — (21 — 21 A5/2
(%0)1227(«0)2( / ) / (71 1 / ), (82)
Rss(sr)(1 — &.A5/2)
which reduces to Eq. (77) when u = 0. For £ < 1, the second solution exists for As < 0,
N N _ 2]As| ( . As>
o) = (25)) = 1-6=2 . 83
(k= ) = iy [+ 2o (1-650) | + (83

According to Appendix C.3, as £ increases to a value bigger than 1, this second solution

turns to be back-front interaction. Namely, for €2 > 1, the second solution exists for As > 0,

ke = ) = 7o [+ g (16 5|+ 84

Remark that when £2 — 1, only (2,9)1 exists while (2,0)2 runs to infinity.
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5.3. Moderate Tilt

It is now more convenient to use y, = 1/, instead of &, where x? < 1. Due to Q)
in Appendix C.3, the retardation solutions in Eq. (69) exist only for A5 > 0 when &2 > 1.
Under the approximation of Eq. (C10) with A5 given by the “steady-state” condition in

Eq. (125), we have the criterion for a moderate tilt

[XR1;(s) — Rs;i(s)]oo; 5 (s)]1/3
o (Rl =TI ) < oo, )

with &,(s) given in Eq. (115). Thus Eq. (69) reduces to

= = =3
(r54)- (a-2ug) - S0
(ZT‘U)I — R A3 )

ultas()(1 =) (% - 5)

(86)

2
1

—~
N
S
(=]
SN
V)
12

(. AR\ AF 5
55 {zAs (-3 +350-w) e

ultis(s)(1 = %) (% = 5
3A5 As
+ [x (2;@ - TS> B (2;@ - fﬂ } . (88)

Furthermore, with Eq. (56) for Z and z, and results in Appendix D for O[RyA5?/Ry6(s)] < 1,

the above retarded solutions become

(ol = 20 = 25 +1As/2f<(s)] [Azig - <Zl i %) * (“7’” - frl%)] - (89)

(Fro)s = %+ ! S s (v - 2)
0= AT RS+ As/2x(s)] | 24 T T
A5 RYANS
_ 5 = 2 (2><+75>] + [zﬂ—:eﬂ (2X+TS>]} (90)
For small initial intrinsic spread satisfying Eq. (79), we have from Egs. (89) and (90)
A5*/24
7 771 ~ — > 9]_
o= (o= S T As /2y (1)
1 A5\?  AS
Z0)2 — Zo ™ 2A5%? (1 — 1. 92
(ro)2 =20 = S G As g | 205X ( * 2>z> MY (92)

Note the tail-head interaction now has a factor (1 + A5/2x) in Eq. (91) compared to the
usual nontilted bunch case in Eq. (80). Unlike in Eq. (81), where the head-tail interaction
is generated at s, > s, for a tilted line bunch with €2 > 1, the head-tail interaction now
is generated at s, < s, with (2,9)2 — 2o smaller for larger tilt £ > 1, in comparison with
(zr0)2 — 2o in Eq. (81). An illustration of the interaction of two source particles with a test

particle on a circular orbit for a tilted bunch is shown in Fig. 3.
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6. EFFECTIVE LONGITUDINAL CSR FORCE FOR A LINEAR ENERGY-
CHIRPED BUNCH

We now study the “steady-state” effective longitudinal CSR force for a moderately tilted
bunch. For a 2D energy-chirped bunch on a circular orbit, the effective longitudinal CSR
force can be obtained by applying A, — 3,® and A, in Eq. (31) to Fyy in Eq. (24):

FYN (X, s) = % [(1+ kow) (A, — Bo®) + ' A,]
BO af(Xra Sr)
0z,
(Ol =) = (2= %) = folr(@, 5) —v(@r, 5)]]

lv(z,s) —r(z, s,

Nr,
" /dsrer Wi (X, 5, Xy, 5,)
Yo

, (93)
with

N N -2A§ NSV SN N NN, _
Wy(X, s, X, s:] = —(1+2)(142,)2sin 7+(x,—x +&2, —1,2") sin A5+2'2, cos A5. (94)

Next, with the zeroth order approximation f(X,,s,) = p[R '(s,)X;,0] and the change of
variables X, = R (s,)X,, and [R™*(s,)]is = (0,0, 1, —u)T, we have in Eq. (93)

8f(X,«, Sr) _ aP(Xroa 0) . uaPO(XTO)
82, aer a((SH)TO ‘

(95)

Moreover, with
0[(s = sr) = (2= 2) = Polr(z, s) — r(zy, 5)[]
Bolr(x, s) — r(zy, )|
for §(P) given in Eq. (65), Z,( in Eq. (55) and p(X,,0) given in Eq. (70), Eq. (93) becomes
_ BN
0| Rol <
where (2,0)1,2 = |Ro|(%r0)1,2 are given by Eqgs. (89) and (90), and the integrand g in Eq. (97)

= 26(P) 0l(s — sr) — (2 — )] (96)

~ 1 £(0)
FI[-{ ](Xa S) dsrdZTO Q[Zro = (ZT‘U)I] + /Q_gsrdZTO Q[Zro = (Zr0)2]> ) (97)

Q-

is

WH [Xa S, XT(ZTOa Z?"O)) Sr] [ a)\0 (ZT‘O) apm (ZTO)]
X? 7Z7“ y» <10y = in Zr - )\ r0) A~ < ~ | -
91X, 8 Zr0, 210, 5) |Rs5(s,)[V0? — ac pin(Zro) 020 udo(zro) (0w )ro

(98)
Here Wy in Eq. (98) is given by Eq. (94), with

&, = x,sign(ko) = [Ras(sr)2r0 + Ra;(sr)(Zr0);] sign(ko),
&' = a'sign(ko) = [Ras(s)20 + Ra;(s)(Z0);] sign (ko).

In the following we use Eq. (97) to study the effective longitudinal force for a moderately

tilted bunch with a simple initial phase space distribution.
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6.1. Modulated Initial Longitudinal Distribution

Assume the longitudinal density distribution in Eq. (70) is the real part of

2
ex
\% 271—0'/20 P ( 20z0

for ko > 0y, so let us consider

) Re [ei(kOZOJr(ﬁo)} (99)

2
5 exXp
O 20 ( 220

and an intrinsic distribution with transverse emittance €,o and (canonical) energy spread

Nolz0) = +zkozg>:— / dkexpl _kO) +2kzgl, (100)

ono: 2 ~'2 N 2
(7)) = _Z0 _ 20 — , 101
pm( 0) 27r€x0 exp ( 2 ) \/%O—HU P ( 2 ( )
where
! ~ )
Fo= 0 g= D0 =0 (102)
020 O z0 OHO

for 0,0 = V/Bao€zo and oy = y/€z0/Pr0, With [, the initial transverse beta function at
s = 0. We now calculate the first integral in Eq. (97), which is mainly contributed from the

—2sin?(As/2) term in Wy of Eq. (94). Under the approximation in Eq. (126), we have

n BONTe/
F ds,dZ,o qlzy0 = (2,
(Fph = 0| Rol 0 glzr0 = (2r0)1]
INr, o dAs —A5/2 (k—k
~ oNr / i 5/ / dkexp( 0) 0) La(s, A5, k) (103)
271"}/0 0 |R55 | /A AS X
for .
_ o e . (6H)r0 .
Ia(s,A5,k) = dZ. | itk +u Pin(Zr0) explik (zq0)1], (104)
—00 OHO
where
|Rs5(sr)|VD? — ac| ~ |Rs5(s)|A5\/A(AS, x) (105)

is used based on Egs. (C12) and (D5), with

A5\®  (A5)?2
2y 12¢2”°

A(AS, %) = ( (106)

and (Z,0) is given in Eq. (89). Here in Eq. (103), the lower integral limit for A5 is extended
to A5 = 0, assuming that oy;(j = 1,2, 6) are small enough that small A5 beyond the range
specified in Eq. (C10) has negligible contribution to Eq. (103). Meanwhile, the upper integral
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limit for As is extended to infinity, since for the “steady-state” interaction discussed here,
there is a negligible contribution from A5 > [5,(s)]"/? (see Eq. (125)).
Next, let us define

k‘2
[I(s, A3, k) = exp [—522(3, AE)] (107)
for R )
_ R5‘(Sr) —Rl(Sr)A§/2>
¥2(s,As) = ( J I ol 108
( ) 26 \ Res(s)(1+ As/2x) 0 (108)
where Eq. (D4) is used,
001 = 0z0, 002 = Ogo/, 006 = OHO, (109)
and for j=1,2,6
ﬁlj (S,«) = le Sign(lig). (]_]_0)
With the identity
1_ U,R%(Sr) — ng(sj)AAS/2 _ 1 _ __ (111)
Rss(s:)(1 — As/2x,) Rss(s:)(1 — As/2x,)
and Eq. (D4), 14 in Eq. (103) becomes
_ ik TI(s, As, k) explik (20 — Azp)]
Ia(s, A5, k) = A% 112
a(s, A5, k) Ry (s)(1 + A5/2Y) (112)
for
| Ro| As3 (_ . As>
Azy = — — . 113
O R =As/2y) |2 BT (113)

For ¥?(s, As) /0%, < 1, using Eqgs. (E3) and (D4), we finally get

. N 00 A5/2
(Fy)y = —o e / dAs 5/
V21y0lo.(s)] Jo Rss(s)(/A(s, As)(1 + As/2%)
- A — Az)? 232(s, As
X (LZZO — Zk'()) exp [— (ZO D) ZU) - ko (8, S) + 7:]?70(20 - AZO)] . (]_]_4)
020 20z0 2
with
o.(s
0.(5) = |Rs5(8)|020, and &,(s) = |R( |) (115)
0
Here the range of AS is set by kgAzy ~ 1 in Eq. (114). Hence for high frequency kg such
that s
R
om@~o< “@> < O[x(s)), (116)
kol R

Eq. (114) reduces to the result for a projected bunch.
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6.2. Gaussian Initial Longitudinal Distribution

We now look at the effective longitudinal force for an initial Gaussian longitudinal bunch

without modulation, namely, ky = 0 in Eq. (100). Let us now define

CY(S) = 5(8)[5_Z(8)]1/3, (117)

which, for an initial line bunch with o,(s) = Ri5(s)o.0 and o,(s) in Eq. (115), is related to
the parameter in Ref. [9] by

0(5)
Furthermore, let As and AZ, be
A3 A3?
A§= —— AZy = . 119
* T L (5] and A% 24(1 + aA5/2) (119)

Then for negligible initial intrinsic spreads

[Rsj(s) — Ruj(s) 513 (s) A5/2|oy, -
O( T o A5 oo ><<1 (j=1,2,6), (120)

and for Rs5(s) > 0, we obtain from Eq. (114) the line bunch result

~ 2Nr
F 20, Q) = 1(Zg, ), 121
i o) = e Tl s s ) (121)
with )
- 33 po 0 AZ - N Zo — AZp)?
[(ZU, Oé) = T/g dASm(ZU — AZO) exp [-%] (122)
for
AS A5\ 2 A§)?
A(AF, ) = <1+%> \/(1+O‘25> + (0‘12‘9) . (123)

The behavior of (2, ) is shown in Fig. 1, which agrees with the simulation results presented
in Ref. [9]. Even though our study was carried out for a moderately tilted bunch with
x? < 1, we note that when a = 0 in Eqgs. (119)-(121), we recover the results of the effective
longitudinal CSR force for a nontilted bunch [8]. As mentioned earlier, the result in Eq. (121)
is the contribution from the retardation solution (z,);. The contribution to Fy from the
other retarded solution, (z,9)2, is a factor o[, (s)]?/® of that from (2,0); and is thus neglected
here for O ([62(3)]1/3) < 1. An example of ag(s) = |a(s)| vs. s for a typical chicane is shown
in Fig. (2), in which Ry = 12.2 m is used as a constant for this plot.
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For o > 0, the inverse of Eq. (119) is
A§ = 44/ AZg cosh Fcosh_1 (4)] : (124)
3 20/ a0 A%y

This dependence is shown in Fig. 2. One can see that for a source particle at bunch tail
and a test particle at bunch head, with a given separation in the bunch Az, the interaction
between the two particles requires a longer range of pathlength As when « gets bigger. Let
the pathlength at the entrance of the circular orbit be s;. When o = 0, the “steady-state”
interaction of the bunch at pathlength s requires 5 — 5, > 2[31,(s)]'/3 for I,(s) = 45,(s).

Now for a tilted bunch to reach “steady-state” interaction, we need
5— 5> O(A3) ~ [7.(s)]"3. (125)

The results in Eqgs. (114) and (121) are obtained by combining conditions for moderate tilt
in Eq. (85), the “steady-state” interaction in Eq. (125), and the approximations in Eq. (C3)

max l()(i),o (Mﬂ < B < 1. (126)

2
7. CONCLUSION

In this paper, we studied the dynamics of an ultrarelativistic electron bunch moving on
a curved orbit under collective interaction. The equations of motion were obtained from
the Hamiltonian of an electron in the bunch, from which the Vlasov equation for the phase
space distribution of the electron bunch was derived. With the phase space description
chosen so as to explicitly apply the cancellation effect, the integral equation yielded from
the Vlasov equation manifests clearly how the phase space distribution is perturbed by the
effective CSR forces. After the above formulas for the self-consistent dynamics established,
we focused on the analysis of the impact of bunch tilt on the effective longitudinal CSR
force, which was carried out under zeroth order approximation for a bunch with initial
linear energy chirp. For a simplified initial bunch phase space distribution, we presented
the analytical expression of the effective longitudinal CSR force as a function of bunch tilt.
These analytical results agree well with Dohlus’ simulation results. Many other aspects of
the effective CSR forces for a tilted bunch, such as the behavior of the effective transverse
CSR force, the behavior of the effective forces around the vicinity of the full compression

point, and the effective forces at the entrance and exit of a circular orbit, can be further
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studied along the approach developed in this paper. A full investigation of the CSR effect
in a bunch compression chicane requires a self-consistent numerical simulation, which can

also be constructed based on the effective CSR forces as formulated in this paper.
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APPENDIX A: TRANSPORT MATRICES

For FI(X,s) = 0 throughout the beam line, which is often satisfied approximately for a
bunch with low charge or long bunch length, Eq. (22) becomes

dxX

= = M(s)X, (A1)

which describes the linear optical transport of particles. For X (0) being the particle’s phase
space variable at s = 0, the solution of Eq. (A1) takes the form

RH(S) R12(8) 0 0 0R16(S)
RQl(S) RZQ(S) 0 0 ORZG(S)
X(s) = R(s)X(0), with R(s)= 2 g 2338 23483 g . (A2)
Rs1(s) Rsa(s) 0 0 1 Rse(s)
0 0 0 0 0 1

which is the usual linear transport matrix from pathlength 0 to s for a beamline. For a
bunch with initial twiss parameters [0, 0z0, By0, o, and an initial energy chirp dg = uz

(u < 0 for a bunch under compression) imposed by an upstream RF cavity, one can further
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define the normalized initial phase space variables Xy = (z¢, T}, Yo, ¥p, 20, 0rr0) " :

1 0 0 000

awo/Bol 0 0 0 0

Xo(0) = AX(0), for A= L (A3)
0 0 ay/Bpl 0 0

0 0 0 010

0

0 0 0 —ul

Combining Eqgs. (A2) and (A3), we have the transport of phase space vector from the initial

normalized phase space to the phase space at s:

X(s5) =R(s)Xo(0) for R(s)= R(s)A™", (A4)
RH(S) — %Rn(s) R12(S) 0 0 ’LLR16(S) Rw(S)
R21 (S) — %RQQ (S) R22 (S) 0 0 ’LLR%(S) R% (S)
0 0 Rus(s) — 2 Ruu(s) Raa(s) 0 0
R(s) = gyﬂ
0 0 R43(8) — B—yOR44(S) R44(8) 0 0
R51 (S) — %Rm (S) R52 (S) 0 0 1 + ’LLR56 (S) R56 (S)
0 0 0 0 u 1
(A5)
Substituting Eq. (A4) into Eq. (A1), one finds R(s) satisfy
dﬁgs) — M(s)R(s) and %ﬁ — R (s)M(s) (A6)

where d(RR1)/ds = 0 is used.

For nonzero effective CSR forces, let us define
Xo(s) =R7(s) X (). (A7)

From Eqgs. (A6) and (22), the change of X is found to be driven by FUI:

% — R (s) FY[R ()Xo, 5], (A8)

Note that for vanishing effective CSR forces, Xy (s) is a set of invariant phase space variables,

namely, Xo(s) = Xo(0) when FUI(X,s) =0 for all s.
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APPENDIX B: MORE ON THE VLASOV EQUATION
B.1. Small Perturbation on a Stable Distribution

Here we look at the evolution of a small initial perturbation on a stable phase space
distribution fo(X, s)

(X, s) = fo(X,s) + fi(X,s), (B1)

where fo(X,s) is such that FIl(X s) is negligible for s along the beamline of interest and

thus fo(X,,s,) =~ fo[R '(s;)X;,0]. A linearized integral equation can be reduced from

Eq. (44)
0 fo(X+, s7)
9(X7);

with f% (X,s) = fi[R'(s)X,0]. The Fourier component of the perturbed longitudinal
distribution at s is [2, 3]

fl(Xv 8) = fl(O) (X7 S) - /05 dST [F[fl}(XT’ 87—)]]_ (B2)

(k. s) = % [ dxe (X, 5) = o0 (k. 5) + Agu(k, ) (B3)

where for pg1(Xo,0) = fo1[R(s)Xy,0], and using dX = dX,; = dXp,

1 .
0\ (k, s) = o / dX o X09) (X, 0) (B4)

™

and

1 s . .
Agilk,s) = 5- /0 ds, / dXo e~ X09) 5o (X, 0)(=ik)Rs; (s, — ) FPIR(5,) X0, 5] (BS)

J

with z(Xy, s) = Rsi(s) (Xo);. When only the j = 6 term is dominant and other terms are
negligible, Eq. (B5) reduces to the perturbative version of Eq. (14) in Ref. [3].

B.2. Relation to Measurable Distributions

Because of the unconventional use of §5 as a dynamical variable in Eqs. (22) and (44), it
is necessary to show how the phase space distribution f(X, s) is related to the distributions
measured in laboratories.

First, the energy spectrum is often measured at a high dispersion point s = sp, where

one measures the horizontal charge density distribution, which is related to f(X,s) by
Ae(,5p) = /f(X, sp) dx'dydy'dzddy . (B6)
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Note that when the effective CSR forces are negligible, A, (x, sp) mainly measures the spread
of 0y at sp.
Second, the horizontal emittance is often measured in a nondispersive region at s = s,

which gives the rms area for the following horizontal phase space distribution:

pe(x, ') s¢) :/f(X, Se) dydy'dzddy. (BT)

Since according to Eq. (44), f(X,s.) in Eq. (B7) is fully determined by the effective CSR
forces and the initial distribution f(X,0), the horizontal emittance is only perturbed by the
effective CSR forces.

Next, the longitudinal density distribution is yielded from f(X,s) by

A (z,8) = /f(X, s) drdz'dydy'doy . (B8)

Similar to the horizontal emittance, here \,(z,s) is also perturbed by the effective CSR
forces.

However, unlike A\, (x, sp), pe(z, 2, s¢), and A,(z, s) which can be determined by f(X, s)
with the canonical energy offset d; as a dynamical variable, the actual longitudinal phase
space distribution p,(z,dg, s), with dg the kinetic energy offset, is now related to the scalar
potential on the test particles at s following Eq. (32):

~ 1
p.(2,0p,8) = /f (x,x',y,y',z, o + ®(x,y,2,5) — 37 s) dxdz'dydy'. (B9)
0

APPENDIX C: SOME DETAILS ON THE RETARDATION SOLUTION
C.1. The Coefficients of the Quadratic Equation P(Az) =0

In Sec. 3, the expression P(z, z, s; X,0, $r) in Eq. (51) is reduced to a quadratic function

of Az in Eq. (62). One can show that the coefficients in Eq. (62) are

(

a=1- (5061")2 i
b = A5+ 7z + B3 [(a& — & — &7) — 2(1 + £) sin® %]
5\*, (89! , C1
¢ ~ (%) + (Alz) + 2A5%,1 + (21)° (C1)
~ . A3 2
L _Bg('f: — jjrl - 61"2)2 — [LIA’,' + (1 + .’,IA}') (ZIA}'TI + 61"2)] (250 sin ;)
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with

1 1
Z1,2m) = —(21,21), and  (Z1,2.1) = — (21, 2,1). C2
(21, 21) |R0|(1 1) (&1, 8r1) = (21, 7r1) (C2)
Under the approximations
sin(A5/2) ~ A5/2, yAs<l, Bi~1, 1+i&~1, (C3)

the terms in Eq. (C1) can be grouped as
bﬁbg—i-bl, CZCO—FCl, (C4)

where by and ¢y are values of b and ¢ when Z,; = 2z, =0

bO = As (1 - §T2AS) + ér(i‘ - 57"2) C5
S ()
Co = 12 - (1‘ - &«Z) - ($ + grz) (AS)

and b; and c¢; are related to the source particle’s initial intrinsic offset via z,; and z,; in
Eq. (54)
by = 7 — Epiiy,
1 1 — &l ) (C6)
(G 2A§Zr1 + (Zrl)Q + 22%71 (JA? — frZ) — (Zi'rl)Q — Zi'rl(Ag)Q.
As shown in Egs. (63)-(65), the roots of P = 0 involves

— (b)? —
w=>0b"—ac=wy+w with @ = (bo)" —ac (C7)
w1 = 2b0b1 + (b1)2 — acy

or
(

32

A2 2
wo = AS (1—&—AS +MA§2—25,3%

2 12
+26,A5(% — £,2) + (2 + £,2)AF? + (2 — £,2)2, (C8)

L W = (_251" + AE)AE(:%TI - grzrl) + (:%rl - érzrl)Q - Q(jj - érz) (:%rl - grzrl)-
The factor (wo + wi)x? in Eq. (69) then yields:

2 of(e AN 1-X7 ., . (0 A BN o (O A A2
(wo +wr)X, = As (Xr__> + AF® = 2| + 2A5(x,2 — Z) + Xr (XrT + 2)AS

2 12
X,Ag)

+(Xed — 2)? = 2(Xpdr1 — Zr1) lAg (1 + (X — z)] + (Xedr1 — Z1)% (C9)
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C.2. Existence of Solutions: (b —ac) =1

The solutions to P = 0, which are Az(®) in Eq. (64) or &) in Eqs. (67) or (69), exist

only when w = b*> —ac > 0, or 0(b> — ac) = 1. When X and s for a test particle are given,
and the pathlength s, for the source particle is given, this condition defines the range of Z,.

In the case when y? < 1, and when og; in Eq. (109) and As satisfy

o <[XR1j(S|)R—O|§25j(S)]UOj> < A3, (C10)
we have for A5 > 0 .
As As?
As [(x -3+ 1—;] > O(Xd1 — 21) (c11)

for the full range of bunch intrinsic distribution (Z,9); = (—50y;, 50¢;) with j = 1,2 and 6.
Consequently from Eq. (C9) one gets

. &)2 As?

— 12
5 +12 >0, (C12)

(b2 — ac)xf ~ A3? [(Xr

or B(b* —ac) = 1. In the situation when op; and As are such that Eq. (C10) is not satisfied,

one needs to solve the range of Z,q using (b* — ac)x? > 0 in Eq. (C9).

C.3. Selection of Retardation Solutions: #(Q*)) =1

Given a test particle at (z, z, s), for a source particle emitting fields at the pathlength

sy, or for fixed As = (s —s,)/|Ro|, we have identified in Eqgs. (67) and (69) the longitudinal

position Z,%) of the source particle in the initial phase space distribution, with Z,Eoi)

either

the “advanced” or “retarded” solution. Here we need to find the range of &, for Z,EE) (or Zfa))

to be the “retarded” solution, i.e., #(Q™)) =1 (or #(Q™H)) = 1), provided (b*> — ac) = 1.
First, for mild tilt with O(&,) ranging from 0 to O(1), using O(z,1) < As < 1, we have

(

~A§— ————— ~ < (1 _ g) — ,

and

( _(1 B érAg) — &2

/p2 _ - “AS A5 >0
Q(H_A_y:% 1— &2 ( ), (C14)
As (A5 <0)

\
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which gives

1 (As>0, or As<0and &2 <1
0(Q0)) = (35> 0, or &5 <D and & < 1) (C15)
0 (As<O0Oand & >1)
and
1 As>0and £ > 1
H(Q)) = (A nd &> 1) ) . (C16)
0 (As<0, or As>0and &2 <1)
Next, for strong tilt, x? < 1, with O(z,1) < A5 < 1, we have
As A2 (1- 2)AF
Ag(l_XTTS)iXAAgM(%_;) § QXA
() ~ 1
Q7 ~ - ; (C17)
and one can show
1 A5 >0
§(Q) = (A5=0) (C18)
0 (A5 < 0).

As discussed in Sec. 4, for £ = 0, the source particle Z,Ear) is ahead of the test particle

=(=)

20 = Z/Rs5(s) in the initial bunch, while the source particle z,,’ is behind the test particle

2. However, it is interesting to note that when &2 > 1, the test particle receives fields from

(+) (=)

the source particles 2z, and z,,’, both generated from pathlength s, behind s, or s, < s.

APPENDIX D: MORE ON THE RETARDED TILTING FACTOR

From the definition of x(s,) and Ri4(s) = —Ris(s)/Ro(s), one gets

_ L+uRs(s —As)  Ris(s) As Rag(s) 9
X = R 5= As)  Fls — As) [X(S) T Be(s) ” 2Rra(s) Bo(s) ) ] (DY)
where
Ris(s —As) | (Bas(s)|Bo(s)| ., Bols)
Rl = 1 < Ruals) ) As + Ry (s) (As)”. (D2)
Eq. (D1) further yields
o) = 572 o (304 57 - o) anp). (D3
For O[RyA5%/Ry6(s)] < 1, Eq. (D3) becomes
Rug(s0) (X - %) — R (1) (1 - QAXS ) ~ Riss(s) (1 + 2?59 )> , (D4)
and it can be shown that
attonl (5 57) + 55 = 'R“(S)'J (o) T a9



APPENDIX E: SOME INTEGRALS

We start from the integral

| oo 1 1 |
Iy=o /m dk exp [—5(1: — k)% — KSR bz Azo)]

1 1 — Azp)? ik —A
— exp [—7 <k§22 + (o 5 ) ) + - olz0 — 8z0)
V2mo0v/ 1+ 1o 2(1 + po) T%0 L+ o

|

for

o = X2 /0%, (E2)

For py < 1, Eq. (E1 yields

oL, 1 [ 1 1 |
=5 | dr by exp {—5(/{ — k)% — KPS k(2 AZO)}
1 %— Az RS2 (29— Azm)?
N _ K KX ko(zo — Az)| . (E
V210, < 0% o 0) o [ 2 20%, +ikoleo ~ Az)| - (E3)
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FIG. 1: Compression factor, Rs5(s) = 1 + uRsg(s), vs. s for u = —40 m~ L.

— &0
90 | =" (9

FIG. 2: Tilt factor or z-z slope, £(s) (defined in Eq. (59)), and parameter ag(s) in Eq. (118) for

u = —40 m ! (assuming positive curvature for the center two dipoles).
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FIG. 3: Tllustration of the interaction of the source particles Sll and SIQ at pathlength s, with the
test particle O at pathlength s for a tilted bunch. The retardation requires $;S; = (v;/c) S;0 and
S5S2 = (v2/¢) S50 (may not seen from drawing which is not to scale). The source particles S}

and S, are at the interceptions of s = s, with the the past lightcones (dashed red arcs) of the test

particle O at (z, z, s), with retarded velocity v; and vy respectively.
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FIG. 4: I(z,a) vs. z for various « given by Eq. (122).
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FIG. 5: A3 vs. Az, for various « given by Eq. (124).
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