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Abstract 
 

Simple considerations of the driving force from a cavity higher-order mode that leads to 
beam breakup (BBU) are presented to show how beam-based feedback can be effective at 
suppressing the instability. In particular we consider how BBU lends itself to using a 
mode-by-mode feedback system. Such a system is described and a prototype feedback 
processor is presented. We also give an expression for the threshold current including the 
effects of the feedback system and show that, in principle, effective suppression of BBU 
can be achieved. 

 
 
Introduction 
 

There has been extensive work within the past two years aimed at gaining a better 
understanding of the multipass beam breakup (BBU) instability. This work has been 
performed through simulations, analytic models and experimental measurements. A great 
deal has been learned about methods to suppress the instability using Q-damping schemes 
and beam optical suppression techniques. While these beam optical techniques showed 
excellent results, the resulting restraints placed on the machine optics makes setting the 
machine up for optimal lasing performance difficult. Therefore, this note gives a brief 
outline for a beam-based feedback system which may prove to be effective at suppressing 
BBU. 
 
 
Driving Force of BBU 
 

We specifically wish to consider the case of a particle driven by a transverse higher-
order mode (HOM) of a resonant cavity. In this simple model we are not concerned with 
the details of the instability, but rather are more concerned about understanding how best 
to utilize a feedback system to combat BBU. We know that BBU is caused by a 
narrowband resonance from a transverse HOM and to describe the effect on the particle 
motion we need the wake force. Note that for a resonant cavity, the wake function for a 
single dipole mode is given by [1] 
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where (R/Q) is the shunt impedance, Q is the loaded quality factor and ωo is the angular 
frequency of the mode. One can also define the wake potential as [2] 
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where q is the exciting charge which induces the wake field which is subsequently felt by 
a test charge, e, a time t later, x  is the off-axis displacement of the test charge and W(t) 
is given by Eqn. (1). The integration is performed over the length of a cavity period. We 
will define an “effective” wake force by considering the integrated effect over a cavity 
period. That is, 
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For the case of a two-pass ERL we assume the particle on the first pass excites and 
induces a wake field which is then felt by on the second pass by a particle displaced by an 
amount x . This displacement can be expressed in terms of HOM and lattice parameters 
as 
 

bV
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where M12 is the element of the recirculation matrix that translates a horizontal angular 
kick on the first pass to a horizontal displacement on the second pass, is the transverse 
HOM voltage applied to the particle and V

⊥V
b is the beam voltage (i.e. )( ecpb ) at the 

cavity. Combining Eqns. (1), (3) and (4) we obtain for the effective wake force 
 

)sin(
2

)()( 2/212
2

te
V
V

cL
QRMetF o

Qt
o

bcav

eff o ωω ω−⊥
⊥ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= .                           (5) 

 
For simplicity, we will write 
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Equation (6) represents the functional form of the driving force that leads to multipass 
BBU. With this in mind, we will see how a feedback can most effectively be 
implemented to combat the onset of BBU. 
 
Bunch-by-Bunch Feedback 
 

In a storage ring, the free-oscillations experienced by a particle under the restoring 
force of external focusing can be modeled as a simple harmonic oscillator 
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where ωβ is the (horizontal) betatron frequency. Storage rings are also plagued by 
multibunch instabilities. Although these instabilities are fundamentally different than 
BBU, beam-based feedback is required to stabilize the system. For many years now, 
bunch-by-bunch feedback systems have been successfully utilized and their advantage 
comes from the fact that detailed knowledge of the driving force, , is not required. 
That is to say, with a sufficiently large feedback gain, the unstable motion can be 
stabilized by introducing a damping term into the equation of motion 
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where g is the gain. In principle, such a system would be effective at suppressing BBU. 
However, the challenges of implementing a bunch-by-bunch feedback system in a 
relatively small, two pass ERL such as the FEL Driver, are prohibitive. We consider 
instead, a mode-by-mode feedback system. 
 
Mode-by-Mode Feedback 
 

In the case of multipass BBU we have detailed knowledge about the nature of the 
driving force that causes the instability, specifically the frequency at which it is strongly 
peaked, ascertained either from measurements or simulations. The idea of the mode-by-
mode feedback is to take advantage of that knowledge. Consider the Fourier Transform 
of Eqn. (6). Using the relation 
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one finds 
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where )(ω⊥f  is the Fourier Transform of  and is also referred to as the impedance 
of the HOM. For convenience, we can rewrite Eqn. (10) in terms of an amplitude and 
phase 
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If we consider only the amplitude, A(ω), we obtain 
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which is sharply peaked when oωω ≈  (see Fig. 1). 
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Figure 1: Plot of Equation (12) where the normalized frequency is 
defined as ω/ωo.

 
Whereas for bunch-by-bunch feedback we sought to provide a damping term, for a 

mode-by-mode feedback we can (if we have sufficient knowledge of the driving force) 
arrange for the feedback system to provide a term that cancels the driving term. That is, 
we want to effectively cancel the driving wake force so that 
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where )( oFBA ω  is generated by the feedback system at the frequency where the driving 
force is sharply peaked. The following section discusses a practical implementation of 
this scheme in the Jefferson Laboratory FEL Upgrade. 
 
 
Practical Implementation 
 

The basic components of a generic feedback system are: (1) a device to detect 
unstable beam oscillations (which is typically a beam position monitor) (2) a receiver to 
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process the signal created by the beam and generate an error signal and (3) a kicker 
driven by the error signal which stabilizes the beam. The key to the mode-by-mode 
feedback is that the effect of a harmful HOM leaves a unique signature on the beam 
spectrum. By imparting a transverse deflection on the beam, the HOM effectively 
amplitude modulates the beam with its own particular frequency. If one considers the 
frequency-domain structure of the beam signal, the HOM manifests itself as a sideband of 
the beam frequency harmonics. By using an appropriately tuned receiver, the sideband 
can be detected and used to generate an error signal. 

A prototype feedback processor is depicted in Fig. 2. An error signal is generated by 
using a slightly modified “difference-over-sum” algorithm. Signals from opposing 
striplines (e.g. top and bottom) of a BPM are bandpass filtered at 1497 MHz. The BPM 
has a good response and the signal should be sufficiently strong at this frequency. The top 
and bottom signals are then connected to a 180 degree hybrid coupler (see Appendix A). 
Care must be taken to ensure that the signals arrive at the coupler in-phase which can be 
achieved by carefully matching cable lengths coming from each stripline. The signal of 
interest is the difference signal which is proportional to the current moment. Dividing by 
the sum of the striplines (T+B), yields the desired intensity independent signal. For a 
given charge per bunch the sum signal is constant, and so to reduce the complexity of the 
system, the process of dividing by the sum signal is replaced by attenuation to provide the 
proper normalization (not explicitly shown in the schematic). The resulting signal is 
downconverted to baseband using a mixer and the 1497 MHz master oscillator frequency 
as the LO input. The output is then bandpass filtered at the frequency at which the 
particular HOM exhibits a sideband. For example, BBU studies in January 2005 
determined that with the particular machine setup at the time, the instability was driven 
by an HOM at 2106.007 MHz. For a repetition rate of 37.425 MHz, the HOM frequency 
will manifest itself as sidebands at 2106.007 MHz modulo 37.425 (= 10.2 MHz) around 
the beam harmonics. Once the sideband has been detected, the signal is sent to an 
amplifier which then is used to drive a stripline BPM as a kicker. 
 

 
 

Figure 2: Schematic of a prototype mode-by-mode feedback processor. 
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Note that the motivation for downconverting the BPM signal is twofold: first, to 
reduce the complexity and cost of the final bandpass filter which requires a very narrow 
bandwidth (a bandwidth of even a few MHz with a center frequency at an HOM 
frequency around 2100 MHz would be prohibitively expensive) and second, at lower 
frequencies it becomes more efficient to drive a stripline kicker. 
 
Issues 
 

Despite its somewhat simple design, there are still many challenges with regards to 
implementing the mode-by-mode feedback. One concern is whether a sufficiently strong 
sideband signal can be detected while the beam is stable. If the sideband only becomes 
detectable when the beam begins to breakup, then clearly it is too late. A measurement 
using a spectrum analyzer to look at a signal from a BPM stripline should readily confirm 
whether an HOM-induced signal can be detected in the region Ibeam < Ithreshold. Even if the 
desired signal can be detected, care must be taken to ensure that the processor effectively 
rejects all other frequencies. This is easier said than done as the beam spectrum consists 
of a myriad of frequencies, some whose source is well known and others which are not. 
There is also a concern about the effectiveness of the feedback if the modulating 
frequency were to have small errors. Since we are essentially feeding back on a narrow 
bandwidth (high Q) system, even small frequency errors may severely reduce the 
effectiveness of the feedback. These various issues may be best addressed by direct 
beam-based measurements after the processor is built. 
 
Implementation 
 

The prototype mode-by-mode feedback that has been described in this section is 
attractive for a number of reasons. One of the primary reasons is that, in principle, this is 
a straightforward (and inexpensive) system that could be built and readily tested (of 
course as the adage goes, “the devil is in the details”).  

For testing purposes, until a more permanent solution is found, a BPM in the 2F 
region could be used as a pickup. The processor (Fig. 2) would be built using 
connectorized parts. One of the remaining questions, assuming a signal can be detected, 
is the gain of the amplifier. It is not yet clear how much power will be required to 
stabilize the beam. Fortunately, this system does not depend on expensive, broadband RF 
amplifiers. In the past the BPM at location 5F09 had been unused and this would make an 
ideal location for the kicker. (Remember that the pickup BPM and kicker need to be in 
regions where there is accelerated beam only).  
 
Setting-up the System 
 

The system described above is very similar to a narrow-band, cavity-based feedback 
system that was successfully demonstrated in BBU studies earlier in the year. The idea of 
that feedback was to couple power from one of the cavity’s HOM ports and using a 
narrowband filter select the HOM frequency of interest, shift the signal 180° in phase, 
amplify the signal and then return it to the cavity through the same HOM port. With 
careful tuning of the phase and gain of the feedback loop the Q of the mode could be 
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damped. The mode-by-mode feedback works essentially on the same principle except 
that it is beam-based.  

The phase and gain of the mode-by-mode system must be carefully tuned so as to 
suppress (rather than enhance) BBU. This can be achieved by using the beam-transfer 
function (BTF) measurement which measures the effective Q of the beam-HOM system 
as a function of average current. The BTF measurement has proved to be very useful in 
the past as it allows one to measure the threshold at currents below the threshold. The 
goal is to optimize the phase and gain of the feedback loop to the point that the effective 
Q decreases as the average current increases – this indicates a very high threshold current 
has been achieved. 
 
 
Effect on Threshold Current 
 

From our single cavity, single HOM model of BBU one can derive an expression for 
the threshold current including the effects of the feedback system. This is given by 
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where, in addition to the usual quantities, g and φ are the gain and phase shift, 
respectively, of the feedback loop,  translates an angular deflection at the cavity to a 
displacement at the pickup,  translates an angular deflection at the kicker to a 
displacement at the cavity, T

PUM12
kM12

d includes the time for the beam to travel from the cavity to 
pickup, for the signal to propagate to the kicker and for the beam to travel from the kicker 
back to the cavity, and Tk is the time for the beam to travel from the kicker back to the 
cavity. The derivation of Eqn. (14) is outlined in Appendix B. 
 
Discussion 
 

A few comments are in order concerning Eqn. (14), in particular the second term in 
the denominator which contains information about the feedback system. First note the 
importance of the  elements. Clearly they need to be non-zero, but more than that, 
the larger this term is, the less gain that is required. A typical value from the FEL Driver 
for  from the 5F09 region to Zone 3 cavity 7 is 10 m, and a typical value for 

from the same cavity to a pickup in the 2F region is on the order of 1 m. 

12M

kM12
PUM12

It is also useful to look at the threshold current as a function of gain and phase shift, 
which, as described in a previous section, are the two variable parameters we have in 
initializing the feedback system. Figure 3 shows the threshold current versus the phase 
shift for several settings of the gain. Values used in generating the plot are numbers 
typical of the FEL Driver. 
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Figure 3: Threshold current vs. phase shift for several gain settings. 
 
 
Recall that a negative threshold current indicates that the perturbative analysis used in 
deriving Eqn. (14) is invalid and that the threshold current is very high (on the order of an 
Ampere) in these regions. Even for small values of the gain, a region of stability can be 
reached with an appropriate choice of phase shift. As the gain increases, the values of the 
phase for which the beam is stable become larger.  
 
 
Conclusion 
 

We remind the reader that the previous analysis has been concerned with a feedback 
to counter the effects of a single dangerous HOM. It may be that many HOMs, each with 
a different frequency, are capable of causing BBU. In that case, a separate feedback 
processor (“channel”) would have to be implemented for each mode. From a practical 
standpoint, this precludes implementing an analog mode-by-mode system in such a 
situation (although perhaps it may be employed digitally). Nevertheless, experience from 
the FEL has shown that beam currents are typically prohibited by one mode in particular 
[3]. Thus, even implementing just one channel to feedback on the most dangerous mode 
can significantly increase the average beam current that can be transported. 

Operationally, beam breakup has caused problems in the FEL and in all likelihood 
will continue to cause problems with the installation of the cryomodule Renascence [4]. 
While we have demonstrated that beam optical suppression techniques can be effective at 
raising the threshold current, it would be ideal to have the beam-based feedback stabilize 
the beam, thereby removing restraints on the machine optics imposed by implementing 
rotations and reflections. This note has briefly outlined the concept for a prototype beam-
based mode-by-mode feedback system which would be well-suited to the FEL. 
 
 
Appendix A: 180 Degree Hybrid Coupler 
 

See Fig. A for a schematic of a 180 degree hybrid coupler. For typical uses, a signal is 
applied to port 1 and the output at ports 3 and 4 are of equal magnitude and in-phase. A 
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signal applied to port 2 results in the output at ports 3 and 4 of equal magnitude but the 
signal of port 4 will have a phase shift of 180 degrees relative to the output of port 3. 
Since these devices are bi-directional, for use in the feedback processor, the two in-phase 
signals of differing amplitudes from the striplines are applied to ports 3 and 4 with the 
result that the output of port 1 is the sum, and port 2 the difference, of the two inputs. 
 

 
 

Figure A: Schematic of a 180 degree hybrid coupler. 
 
 
 
Appendix B: Derivation of Threshold Current with Mode-by-Mode Feedback 
 

For a single cavity containing a single dipole HOM, the threshold current is given by 
the familiar expression 
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where, for simplicity, we consider only one dimension (horizontal). The following 
derivation for the threshold current is based on the formalism used in the theory of 
control systems. This was first applied to the problem of BBU by E. Pozdeyev who used 
it to derive an expression for the threshold current with a feedback system [5]. The 
following derivation considers the effect of a mode-by-mode feedback system as 
described in the main body of this paper. Figure B is a block diagram of the system we 
are considering and may be a useful reference throughout the derivation. 
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Figure B: Block diagram showing the cavity (G), the feedback loop that 
produces BBU (H) and the feedback system (C) designed to combat the 
effects of the instability. 

 
We note that the off-axis displacement of the beam on the second pass is given as the 

sum of the displacement due to the HOM voltage kick and the displacement produced by 
the feedback system 
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The first term on the right hand side of Eqn. (2’) is given by the M12 element of the 
recirculation matrix times the angle produced by the transverse voltage kick on the 
previous pass 
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The displacement produced by the feedback kicker is the quantity of interest and is 
expressed as, 
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where  is the element that translates an initial deflection at the kicker to a 
displacement at the cavity. The deflection produced needs to be proportional to the kick 
initially imparted to the beam a time T

kM12

d ago and modulates the beam by the down-mixed 
frequency ωmod. That deflection is described by the following expression 
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where g and φ are the gain and phase shift in the feedback loop, respectively, and which 
are variable parameters. The driving term of the instability is the current moment which 
we write as 
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Taking a Laplace Transform of Eqn. (6’) we obtain 
 

( ) ( ) ( ) dd sTTi
k

kPU

b

b eeTsVMM
V
IgsxI −−

⊥ += ωφωmod1212 sin                       (7’) 

 
The transfer function for the feedback system, C(s), is given by 
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The closed-loop transfer function for the cavity, G(s), is given by 
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We are searching for the current at which the system goes unstable thus marking the 
onset of BBU. To ensure stability, all poles of the closed-loop transfer function must be 
in the left hand side of the complex plane. The poles of Eqn. (9’) are given by the values 
of s that satisfy 
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which is a transcendental equation. To solve this analytically, we make the approximation 
that the last term in the above equation is small compared to the other terms and write 
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Substituting Eqn. (10’) for s in the exponentials and requiring that the real part of the 
poles be less than zero (to ensure stability) leads to the condition 
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Solving for the threshold current yields 
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Although the exponentials come out naturally from the derivation, from previous 
assumptions that are made about the model, one can safely ignore these terms as they are 
nearly unity for the high Q modes in the relatively small FEL Driver (i.e. small Tr and Td) 
that we are considering. 
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