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Abstract

This paper gives an estimate of the maximum acceptable level for the
multipole components of the dipole and quadrupoles in the 12 GeV up-
grade. Previous work yielded the specifications for the normal multipoles
for dipoles and quadrupoles in Arc 10. This work extends the specification
to all the dipoles and quadrupoles in the machine and also sets limits on
the skew components.

It is found that the skew quadrupole term has to be kept at or below
1 Gauss/cm in order to meet the specifications. Higher order skew terms
can be specified together with the normal term in terms of the resulting
amplitude. For this reason, the original specification on the amplitude
of the normal multipole terms was recast to specify the total amplitude
including the skew terms contribution. The final specification was tracked
through the machine and validated in terms of its effect on the phase-space
and halo.

1 introduction

The 12GeV CEBAF upgrade will require a tenth arc. Synchrotron radiation
effects will produce a significantly larger beam than in the original 6 GeV ma-
chine. As a consequence, the sensitivity to field inhomogeneities is greater.
Field inhomogeneities arise as a result of machine and assembly errors, steel
saturation and imperfect pole shapes.

Excessive multipole content affect steering and also increases emittance growth.
A specification that restricts the amount of emittance growth is given for both
normal and skew multipoles. We followed an approach analogous to the one
adopted the original work [1] and adapt it for the inclusion of skew multipoles.

2 definitions

2.1 normal and skew multipoles

Magnetic fields are derived from a potential function which is the solution to the
Laplace equations. In general, this potential is expressed as a Taylor expansion
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Figure 1: xx’ phase space distribution at end of ArcA for 0, 0.5 and 1.0 m−3

normal sextupole strengths

in the complex plane.
The magnetic field can be obtained by differentiation of the complex po-

tential which has both an imaginary part and a real part. The imaginary part
represents the midplane symmetry solution and the coefficients of the expansion
are normal multipoles.

The real solution is the part corresponding to the out-of-plane situation
(rotated magnet) where one has coupling between the transverse dimensions.
The expansion exhibits the skew multipoles.

Each multipole component contributes to the integrated field according to
the polynomial expansion (in DIMAD utransport conventions)

B(x)L = (Bρ)
∑

n

KnLxn (1)

2.2 good field region

The 12GeV field specifications are defined relative to the design orbit. Due to
steering offsets, pathlength errors, optics measurements allowance and so on,
the actual orbit will be deviating from this design orbit. Hence, one requires
the field to satisfy the specifications in the cross-sectional area bounded by

|x, y| < S + m + 4σ(x, y)

where S is the steering allowance of 1mm, m is the optics measurement allowance
of 2mm and sigma the beam size.

3 cross-comparison with DIMAD calculations

The beam was tracked through the Arc and the second-moments of the particle
distribution were computed at the end of the line. From these, the βm, αm

and ǫm of the new mismatched distribution were obtained. Typical phase-space
distributions are shown in figure1

Each multipole was varied individually covering a range of effects from small
distortion of the phase space to large tails and particle loss. That procedure
was repeated for twenty random orbits distributed uniformly within the good
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field region. The amount of mismatch was evaluated for each dataset for the X
and Y planes independently.

3.1 generation of multipole content

Systematic and random multipoles were studied in the dipoles. The former were
distributed uniformly along the lattice, giving the same value for all dipoles in
the arc. We repeated the simulation for positive and negative values.

The random multipoles were allowed to vary between −KnL and +KnL for
each dipole. The sampling was repeated twenty times for each orbit.

3.1.1 test orbits

The test orbits were generated by randomly offsetting the beam at the entrance
of the Arc in order to probe the totality of the good field region. Figure 2 shows
the coverage.

Figure 2: Coverage of the test orbits

3.2 measure of the beam mismatch

As a measure of the mismatch, we use the ratio of the emittances between the
matched design ellipse and the emittance of the design ellipse that would be
needed to encompass the mismatched ellipse arising from multipoles. This is
the same definition that was employed in [1].

Figure 3 shows the original matched ellipse (red), along with the mismatched
ellipse resulting from multipole components (green) and the final re-matched
ellipse for which the twiss parameters of the beam are adapted to the transport
parameters at the entrance of the next linac.

The ratio between the areas of this ellipse and the original matched ellipse is
the measure of mismatch. It is possible to compute this ratio analytically. The
easiest way to do so is to transform the mismatched beam into the Floquet frame
of the design beam. In this frame, rematching is a simple matter of increasing
the radius of the design circle until it encompasses the mismatched ellipse.

In [1], this procedure was carried out by hand in a Matlab program.
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Figure 3: beam ellipses after tracking through ArcA with a sextupole component

We fitted βx0(βx),αx0(αx),γx0(γx),ǫx0(ǫx) the twiss parameters for the origi-
nal and mismatched ellipse respectively by transporting a particle bunch through
ArcA. Care was taken to use enough particles (10000) to produce reliable fits
for the twiss parameters.

The mismatched parameters can then be transformed into the Floquet frame
with

βxf =
βx

βx0

(2)

γxf =
αx0

βx0

βx − 2αxαx0 + βx0γx (3)

It can be shown that the transport matrix eigenvectors are the major and
minos axises of this phase space ellipse. Rematching in the Floquet frame consist
in encompassing the ellipse by a circle whose radius is equal to the major axis
of that mismatched ellipse.

The eigenvalue giving the length of the major axis is

h =
1

2
(γxf + βxf ) (4)

a =
√

h + 1 +
√

h − 1 (5)

which finally yields the area E (emittance) of the rematched circle and con-
sequently, the mismatch M defined as the ratio between that area and the mis-
matched ellipse area (emittance).

E =
a2

2
ǫx (6)

M =
E

ǫ0
− 1 (7)

We checked that our analytical approach gave the same results as the manual
Matlab procedure carried out in [1].
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3.3 Linear errors

We first investigated the effect of normal quadrupole errors in the dipoles (the
so-called body gradient). A quadrupole gradient can arise during the fabrication
and assembly of dipole magnets if the pole faces are not perfectly parallel. It is
reasonable to assume that this is a systematic error, identical for all the dipoles
of the same type since they were all machined following the same process, by
the same manufacturer.

An earlier note gives magnetic measurements made on the 1 meter magnet[10]

where the value was estimated to be B
′

L
BL

= 0.03m−1.
More recent beam based measurements [3] are listed in table 1.

Magnet Type B′L
BL

m−1

BE 1 meter 0.0233
BB 2 meters 0.0192
BA 3 meters 0.00712

Table 1: July 2004 Beam based measurement of body gradients.

In order to set an upper limit on the amount of normal quadrupole compo-
nent that can be tolerated, we carried out a set of simulations where the body
gradient was gradually increased and the fodo structure of the Arc restored
by adjusting the Arc quadrupoles accordingly. We were able to go as high as
K1 = 0.002m−2.

Given that

B′L

BL
=

B′L

Bρ

ρ

L

= K1L
ρ

L

=
K1L

θ

We get an upper limit for the maximum allowed normal quadrupole error
of B′L

BL
≤ 0.8m−1. This is many times above what we actually observe in the

existing dipoles.

3.4 normal sextupole random errors

Table 2 shows the amount of mismatch in percent relative to the amplitude of the
random sextupole component. The error bar represents the range of values that
were present. This data is generated from twenty orbits, with twenty random
datasets per orbit.

If one wishes to always remain under 10 percent of mismatch, a value of
K2L < 0.4 is adequate.

We repeated the study for the octupole term (K4L) and again, found results
compatible with the earlier study.
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K2L (m−2) Mx My M
0.05 4.1 ± 1.3 3.0 ± 0.6 4.3
0.1 5.1 ± 1.6 2.7 ± 0.9 5.7
0.15 4.7 ± 1.6 3.5 ± 1.2 5.8
0.2 5.9 ± 2.0 4.9 ± 1.6 7.6
0.3 6.7 ± 2.2 5.3 ± 1.8 8.5
0.4 12.6 ± 4.5 6.2 ± 2.2 14.0
0.5 13.7 ± 5.0 5.2 ± 2.0 14.6
1.0 15.3 ± 5.5 14.8 ± 5.3 21.2

Table 2: Mismatch in percent for each plane for increasing values of sextupole
component.Proposed specification is above the horizontal line

4 Estimating higher order terms for quadrupoles

Quadrupole errors can be partitioned in systematic (pole shape, saturation) and
random (contruction) errors.

In [7], measurements done upon receipt of the QA quadrupole during the
construction phase of CEBAF were recently reexamined. This data set con-
sisted of 126 measurements on 103 magnets. The normal component for all the
multipoles up to n=20 were measured initially over a current range from 1 to 10
Amps. The particle tracking program ELEGANT [2], allows for the inclusion
of both systematic and random, normal and skew components for quadrupoles.
A utility sddsrandmult is provided in this sofware package which implements
the formalism presented in [9] by Halbach. This parametrization is well known
and commonly used for estimated construction errors on magnets. This utility
was used to reproduce the multipole distribution found in the measurements by
varying the construction errors until they reproduced the measured spectrum.

Multipole term DB
B

rand. DB
B

syst. DB
B

poz.
n=2 2.6e-3 0.0 0.0
n=3 4.6e-3 0.0 3e-3
n=4 1.8e-3 0.0 0.0
n=5 2.2e-3 9e-4 5e-3
n=6 3.0e-3 0.0 0.0
n=7 4.6e-3 0.0 0.0
n=8 5e-3 0.0 0.0
n=9 5e-3 2e-3 5e-3

Table 3: Proposed quadrupole specifications at the pole tip and comparison
with previous one.

It turns out that this required an error of about 1/5 of the allowed errors
specified by the technical drawings.

In order to estimate the systematic errors, the author of [7] postulated that
since the saturation effects are small at the pole tips (they are mainly located at
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the root of the steel by design), the systematics errors are due to the geometry
of the pole shape and will appear in the allowed multipole terms on top of
the construction errors. By comparing the allowed multipole sigma/mean with
the unallowed multipoles, the systematics where attributed to the widening
of the spectrum for the allowed terms. Assuming further that they added in
quadrature with the random errors yielded the estimate.

Values proposed in [7] for simulated real quadrupoles as measured are sum-
marized in table 3 in terms of errors normalized to the quadrupole field B at
the tip. Similarly to what we did for the dipoles, we multipled the original
values by a factor of five to set the actual specification. A full-tracking was then
performed with all dipoles and quadrupole specifications to check for validity.

Another cross-comparison that can be made is with earlier tracking results.
The first two columns show the random and systematics field errors we proposed
for the upper bound in this specification. In the third column labeled ∆B

B poz
,

the numbers obtained for Arc10 in [1] are shown.
This new proposed specification is in line with those earlier results.

4.1 Comparison with new MQA measurement

Figure 4: Quad QA238 measured at 17 amps

Recently, quad QA238 was remeasured at 17 Amps after significant improve-
ments were made in the magnet measurement test stand [8]. Figure 4 shows
the magnitude of the multipole terms. As seen from that, they all are within or
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below 1E-3. This is several times under our proposed specification.

5 Dipole magnet modelization results

TOSCA was used to estimate the field integrated along the magnet trajectory
[4],[5]. Individual multipole components were evaluated by Fourier analysis on
a circle and gave B1xL,B2x

2L, . . . BnxnL. The field expansion can be written
as (8):

By(x)L = B0ρ

(

L

ρ
+

B1xL

B0ρ
+

B2x
2L

B0ρ
+ . . . +

BnxnL

B0ρ

)

(8)

Equation (8) can be used to express the relative field error at a distance x
in terms of multipole components Kn:

∆By(x)L

B0L
= ρ

(

K1x +
K2x

2

2
+ . . . +

Knxn

n!

)

(9)

On a per-multipole basis, the relationship between relative field error at a
specific distance x0, and the corresponding multipole is:

(

∆B

B

)

n,x0

= ρ
Knxn

0

n!
(10)

Using (11), the values for the KEL
n for ELEGANT were obtained. This was

done at a radius x0 = 1 cm where the field error had been evaluated from the
TOSCA model. The equivalent DIMAD multipoles were obtained using eq.12.

KEL
n = n!

(

∆B

B

)

n,x0

1

xn
0

1

ρ
(11)

KDM
n L = KEL

n L
1

n!
(12)

Models for all magnet types were made and multipoles were evaluated. This
accounts for the systematics in the dipoles representing effects arising from the
shape of the poles and the steel staturation.

Random errors generated by mechanical imperfections during the machining
and assembly were estimated elsewhere [11].

5.1 Arc Dipoles

In order to set an error budget to take into account construction errors and
misaligments, particle tracking was used in this work as well as in [1]. Previous
work done on ArcA [1] is essentially in agreement with this work. Table 5 sum-
marizes results from [1]. The octupole component was not taken into account
in this earlier work.
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MBE1m(16) MBR2m MBE1m MBB2m MBA3m MXP4m
ARC1 ARC2 ARC3 ARC4,5,6 ARC7,8,9 ARCA

K2L (m−2) 0.35 0.22 0.24 0.12 0.11 0.07
K3L (m−3) 2.22 3.51 8.31 4.21 2.20 2.26
K4L (m−4) 543 1390 327 166 215 148
B

′

L
BL

(m−1) 0.022 0.020 0.036 0.018 0.015 0.010

Table 4: Expected DIMAD multipole values from TOSCA calculations (no con-
struction errors)

MXP4m
ARCA

K2L (m−2) 0.15
K3L (m−3) 0.0
K4L (m−4) 236.0
B

′

L
BL

(m−1) 0.078

Table 5: DIMAD multipole specification obtained from [1]

Generalizing to the other arcs was done by taking the multipole components
from table 4 and scaling them by a factor of six. This is a simple way to add
room for the random construction errors and has been used elsewhere [6].

TOSCA gives a relatively accurate estimate of what saturation effects will
be and these will depend on the design of the magnet and the field at which
they are run.

In the case of the second step dipoles in the spreader/recombiner/transport
recombiners, these effects are significantly bigger than in the arcs. We set the
specification there by adding roughly the same amount of construction error
room as given by the arc dipoles of the corresponding passes rather than just
scale by a factor of six the field errors which would have resulted in unphysically
big field errors specifications for the second step dipoles.

Following this approach, we arrived at the final multipoles specifications, for
each ARC dipole, given in table 6.

MBE1m(16) MBR2m MBE1m MBB2m MBA3m MXP4m
ARC1 ARC2 ARC3 ARC4,5,6 ARC7,8,9 ARCA

K2L (m−2) 1.74 1.08 1.19 0.60 0.54 0.33
K3L (m−3) 11.1 17.54 41.56 21.07 11.01 11.28
K4L (m−4) 2714 6951 1636 829 1071 740
B

′

L
BL

(m−1) 0.11 0.10 0.18 0.09 0.08 0.05

Table 6: Proposed specifications for DIMAD KnL
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Figure 5: comparison between analytical specs and tracked specs for B
′

L
BL

(m−1)

The B
′

L
BL

is computed for the non linear terms and does not in-

clude the quadrupole term as it is linear and readily correctable by

adjusting quadrupoles in the lattice.

5.2 comparison with the analytical approach

In TN-06-030, an analytical approach was chosen to estimate the field error
tolerances in the arc dipoles. The criterion was that the effect of all the non-
linearities should not result in more than 10 % of mismatch. Dipoles were
allowed to have a sextupole and decapole component. No octupole was taken
into account.

Given this, table 7 gives the multipole values (in the DIMAD convention)
derived from the analytical approach. Figure 5 shows the analytical specification

versus the tracked specification in terms of B
′

L
BL

computed at 1cm.

MBE1m(16) MBR2m MBE1m MBB2m MBA3m MXP4m
ARC1 ARC2 ARC3 ARC4,5,6 ARC7,8,9 ARCA

K2L (m−2) 1.59 1.11 1.16 1.16 0.89 0.89
K4L (m−4) 194 136 142 142 109 109
B

′

L
BL

(m−1) 0.082 0.057 0.12 0.12 0.11 0.092

Table 7: KnL Specifications arrived at via the analytical approach
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5.3 Spreader, recombiner and transport recombiner dipoles

The spreader, recombiner and transport recombiner dipoles were modeled in
TOSCA and multipoles were obtained. The trapezoidal dipoles (second BCOM)
as well as the first BCOM (rectangular) were modeled on a per-pass basis.

All other second pass magnets (MAI’s and such) were considered together.
Their sagitta being similar, the field errors were computed along one single ref-
erence trajectory. Multipoles were then obtained using (11) for the ELEGANT
multipoles and and (12) to compute the equivalent DIMAD multipoles.

Following the same approach, we multiplied the TOSCA values by five to
budget for random construction and assembly errors.

Magnet K2L (m−2) K3L (m−3) K4L (m−4) B
′

L
BL

MAI1S04,S06,R01,R03 4.09 32.61 5931.53 0.15
MAI1S03,R04 4.05 32.24 5865.72 0.15
MAI2S04,2S06 1.51 21.95 6579.16 0.14

MAI3S04,3S06,3R01,3R03 1.48 43.71 1965.89 0.22
MAV3R04,3S03 1.74 51.43 2313.18 0.15
MAL2S03,2R04 1.15 16.67 4996.89 019
MAA3S04,3S06 1.48 43.71 1965.89 0.28
MAV4S03,4R04 0.73 19.32 956.79 0.14

MAF4S04,4S06,4R01,4R03 0.82 21.45 1062.38 0.14
MAC5S04,5S06,5R01,5R03 0.47 12.4 614.29 0.14

MAU5S03,5R04 0.66 17.24 853.85 0.14
MAU6S03,6R04 0.46 12.19 603.83 0.14

MAB6S04,6S06,6R01,6R03 0.61 16.03 793.95 0.14
MAC7S04,8S06,7R01,7R03 0.25 4.25 416.43 0.14
MAE8S04,8S06,8R01,8R03 0.38 6.54 641.1 0.14

MAR9S06,9R01 0.27 4.62 452.46 0.14
MXHAS05,AR01,MAHAS06 0.25 5.64 423.09 0.10

MARBS07,BS08 0.18 4.14 310.56 0.10
Table 8:Proposed specifications for second step dipoles

Table 9: Proposed specifications for Common Dipoles

Magnet K2L (m−2) K3L (m−3) K4L (m−4) B
′

L
BL

MAQ1S01,1R06 1.1 13.5 8233 0.06
MAQ3S01,3R06 0.39 4.8 2943 0.06
MAQ5S01,5R06 0.24 2.94 1792 0.06
MAQ7S01,7R06 0.17 2.11 1288 0.06
MAQ9S01,9R06 0.13 16.48 1005 0.06
MAQBS01,BR06 0.11 1.35 824 0.06
MAS3S02,3R05 0.75 27.0 221 0.1
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Table 9: continued

Magnet K2L (m−2) K3L (m−3) K4L (m−4) B
′

L
BL

MAS5S02,5R05 0.46 16.44 135 0.1
MAS7S02,7R05 0.33 11.81 97 0.1
MAS9S02,9R05 0.12 1.52 928 0.06
MASBS02,BR05 0.10 1.25 761 0.06
MAW2S01,2R06 0.65 7.94 4843 0.06
MAW4S01,4R06 0.33 4.08 2488 0.06
MAW6S01,6R06 0.22 2.75 1674 0.06
MAW8S01,8R06 0.17 2.07 1261 0.06
MAWAS01,AR06 0.14 1.66 1012 0.06
MAX4S02,4R05 0.57 20.29 166 0.1
MAX6S02,6R05 0.38 13.65 112 0.1
MAX8S02,8R05 0.29 10.28 84 0.1
MAXAS02,AR05 0.11 1.36 83 0.06
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Figure 6: Horizontal and Vertical beam profiles at radiator in hall D for the
specification

This was validated by full particle tracking on the parallel computing facility.
Forty millions particles were tracked from the exit of the injector to the entrance
of hallD. This resulted in mismatches and emittance growth within tolerances.

Figures 8 and 7 show the outcome of the transverse x and y distributions at
the hallD radiator.

Multipole effects are clearly visible. They are somewhat washed out in the
horizontal plane because of the synchrotron radiation.

Keeping in mind that these effects are suppressed by several orders of magni-
tude, the specifications proposed in table 6 are adequate and they have a safety
margin of another factor of two provided one keeps the sextupole term under
control.
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Figure 7: Horizontal and Vertical phase-space at radiator in hall D for the
specification

5.4 septa magnets

In the beam switchyard area of the machine, the fifth pass can have up to three
parallel beams vertically separated for each hall. Hall A is the one on top,
hall B in the middle and hall C in the bottom. The separation is about 1cm
between beams at the start of the BSY area. These three parallel beams are
then deflected horizontaly via a lambertson magnet and a pair of septa magnets
(MYRAT03 and MYR8T04). The resulting three beams are send on their way
to their respective halls via second order achromatic transport channels. One
area of concern is the required field quality (in terms of multipoles) in these
two septum magnets. The A beam is the closest to the top edge. Multipole
content was computed in these magnets for various trajectories taken nearly
parralel to the magnet edge along the whole magnet. We then gradually scaled
up this multipole distribution until the phase-space distortion and halo became
borderline.

table 10 gives the upper limit on the values for the multipoles and the re-

sulting B
′

L
BL

for an A beam located 2cm away from the edge of the magnet along
the whole length.

Table 10: A beam located 2cm away from top edge of MYR in 5th
pass

Magnet K2L (m−2) K3L (m−3) K4L (m−4) B
′

L
BL

MYRAT03,8T04 3.0 81.5 2854 0.14

The resulting distortions are equivalent to about three times what the ArcA
specification was set to be.
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Figure 8: Horizontal and Vertical beam profiles at Compton for Hall A beam

In practice, the situation we evaluated is a worst case scenario. It is possible

13



X(m)
-0.002 -0.0015 -0.001 -0.0005 0 0.0005 0.001 0.0015 0.002

P
x(

ra
d

)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
-310×

Y(m)

-0.002 -0.0015 -0.001 -0.0005 0 0.0005 0.001 0.0015 0.002

P
y(

ra
d

)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
-310×

Figure 9: Horizontal and Vertical phase-space at Compton for Hall A beam

6 Effect of skew multipoles

6.1 Skew quadrupole term

We estimated the effect of a skew quadrupole component on the dipole magnets.
Studies were done with systematic skew components. Separate studies show that
the amount of skew quadrupole arising from end effects and steel saturation are
negligeable. The bulk of the skew errors will come from manufacturing errors at
the poles. We chose to simulate the worst case scenario for which all the skew
components are the same at each magnet rather than randomly distributed.
This could happen if the error arise from the manufacturing process rather than
assembly.

The effect of the skew component on the beam is twofolds. First, the trans-
port becomes coupled. Secondly, emittance leaks from the horizontal to the
vertical plane. We assessed the amount of coupling by exciting the lattice with
an orbit of about 1mm in amplitude in the horizontal plane. The resulting verti-
cal orbit was then read off for various distributions of skew quadrupoles. Figure
10 shows the situation where one has a skew component of J2L = 10−3m−1 dis-
tributed systematically on all 32 dipoles. This corresponds to about 1 Gauss/cm.
The resulting vertical orbit is measurable by the bpm system, growing to about
100µ in amplitude by the end of the Arc.

The resulting mismatch is mainly in the vertical plane (about 10 % versus
3% in the horizontal plane).

The coupling of the X and Y plane will have an effect on the performance
of the steering systems. One can estimate the impact on the degradation of the
2D steering.

A normal multipole component produces kicks in the transverse planes as
given in eqs (13) and (14).
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Figure 10: Left is horizontal orbit, right is resulting coupled vertical orbit for a
skew quadrupole component J2L = 10−3m−1.

∆θx = −BnL

Bρ

rn

n!
cos(nθ) (13)

∆θx =
BnL

Bρ

rn

n!
sin(nθ) (14)

r =
√

x2 + y2 (15)

For a skew component, one must rotate the reference frame by the amount of
skew, evaluate the kicks in the rotated frame and rotate back in the lab frame.
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Given that

~V lab =
[

x, x
′

, y, y
′

, l, δ
]T

(16)

Rα =

















cosα 0 sin α 0 0 0
0 cosα 0 sin α 0 0

− sinα 0 cosα 0 0 0
0 − sinα 0 cosα 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















(17)

∆ ~V s = Rα. ~V lab (18)

tan θ =
∆ ~V s

y

∆ ~V s
x

(19)

~V s = ∆ ~V s +
[

0,−B1L
Bρ

rn

n!
cosnθ, 0, B1L

Bρ
rn

n!
sin nθ, 0, 0

]T

(20)

~V slab = R−α. ~V s (21)

If we enter in the midplane (y = 0) with zero angle, the resulting kicks from
skew components can be expressed at any multipole order as :

∆θx = 0.0 (22)

∆θy = −B
′

L

Bρ

xn

n!
(23)

while the kicks from the normal components are given by

∆θx = −B
′

L

Bρ

xn

n!
(24)

∆θy = 0.0 (25)

For n=1, we recover the quadrupole results, n=2 gives the sextupole term
and n=4 the decapole term.

To get an idea of the scale of this effect, we can equate that to a roll error
in a dipole which would read:

∆θx =
B cos θrL

Bρ
(26)

∆θy = −B sin θrL

Bρ
(27)

Comparing the two, we get the equivalent roll angle θr to be

Bm = Gm

xm

m!
(28)

sin θr =
BmL

BL
(29)
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Table 11 gives the kick and equivalent roll for the skew quadrupole, sextupole
and decapole kicks, for a gradient Gm = 1.0 Gauss/cmm and a beam off-
centered by x = 0.1 cm.

Order kick(rad) roll (rad)
1 1.09e-6 11.1e-6
2 5.55e-7
4 0.46e-7

Table 11: multipole kicks for off-centered, on midplane, beam

Looking at table 11, one sees that only the skew quadrupole really matters.
(also see section 6.2 for more discussion on that point)

As a reminder, the 12GeV error budget allocates 1.0 mrad to the dipole roll.
If the dipole are installed with significantly less roll, then one could absorb the
coupling error in this error budget and set the limit to 1 Gauss/cm.

Another way to picture the effect is to imagine a vertical corrector located
at the middle of each dipole and kicking the beam by 1.0µrad. We carried out
the estimate numerically using Elegant, asking it to resteer the vertical orbit to
compensate for the effect of the skew kicks.

Otherwise, one can add this equivalent roll error to the original error budget
and get an estimate of the effect of skew quadrupoles on the steering.

We would like to keep the coupling below the level that one has to correct
for it, hence one can set the limit to be J2L < 5.010−4m−1 (less than 0.2 G/cm)
which brings it down to below the bpm accuracy of 20µ.

This specification could be relaxed if one designs a 4D steering algorithm to
maintain the beam at the required stability.

6.2 higher order skew terms

For the higher order skews, the situation is slightly different. Both normal and
skew components will give coupling. Hence, the skew terms become relatively
indistinguishable. This is more and more true as the order of the multipole
increases (the angle diminishes). The main effect these skew terms have is
emittance growth.

There is no need to set a separate specification for the skew components.
It is sufficient that the combined amplitude (quadradic sum) of the skew and

normal component stays below the B
′

L
BL

specifications we already gave.
Figure 11 shows the vertical and horizontal mismatch distribution in percent,

for two hundreds random multipoles distributions for which the amplitude a =
√

K2
2r + J2

2r was kept constant but the mix between normal and skew component
was varied. As seen from these histograms, there is no need to distinguish
between emittance growth coming from the normal or skew components.
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Figure 11: decapole mismatch in percent for various combinations of normal
and skew with total amplitude kept constant
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