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Abstract

In order to eventually guide the electrons throughout the accelerator up to their highest
energy, the beam trajectory has to be simulated for the entire accelerator with
appropriate numerical codes, such as ELEGANT, Optim, etc. prior to the actual facility
construction. In the 12 GeV project framework, constraints are tighter than they were
for the 6 GeV machine and the accuracy of the simulations have to catch up. Since
measured data concerning the elements are not available in many cases, local scale
simulations acquire a very particular importance for they can be the only way available
to determine the characteristics that will be used to introduce each magnet into whole-
accelerator simulations. The present study focuses on a possible improvement of those
local simulations by making them take into account more realistic parameters such as
machining defects.

The local scale simulation tool used in this study takes a large number of characteristics
of the magnets into account. However, none of the simulations realized so far included
geometry imperfections. The poles were assumed to be perfectly parallel, their surface
to be perfectly plane... Those assumption appeared to be valid up to now, but since both
fields and steel saturation in the magnets of the 12 GeV-configured lattice are going to
be much higher than in the present 6 GeV machine, the idea of taking geometrical
imperfections into account arose from the concern of being able to precisely specify the
tolerances that were to be required for the new magnets.

The first models comprising simulations of machining defects are created throughout
this study, and a valid perturbation modeling technique is developed. A strong
correlation is observed between the first skew multipole terms of the field and the
amplitude of the geometrical perturbation and conclusions are drawn concerning the
field perturbations induced in the zone located between the magnet poles. However, the
mesh densities reached at the time of this study and the field evaluation techniques that
were exploited did not allow to draw conclusions regarding the influence of the edges of
the magnet poles whose study remains for further work on the subject.

Discrepancies between the actual values of the simulated field perturbations and the
measured data that is available are addressed and some advice is dispensed concerning
future parts specifications and assembly. The final word however recalls that actual
direct measurements of what was simulated are of course desired to qualify the results
and the conclusions.



Introduction

This document presents the work realized by the author for his master thesis under the
direction of Jay Benesch. It is divided in six main parts.

The two first parts explain the origins of the concern founding this study as well as the
strategy that was elected in order to establish conclusive results. The third part relates
step by step the proceeding that has been followed, in accordance with the above
mentioned strategy. Part four presents the results of the study along with their
interpretation. The practical conclusions that can be deduced from those results are
listed in part five. References, bibliography and annexes constitute the sixth and last
part of this document.

Note: Out of concern for consistency with the scientific procedures being followed
among the physicists at Jefferson lab, every value in this document is given in the CGS
unit system, unless explicitly indicated otherwise.
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| - Initial concern
1.1 - Initial situation

In order to be able to guide the electrons throughout the accelerator as their energy gets
higher and higher, the beam trajectory has to be simulated for the entire accelerator with
appropriate numerical codes, such as ELEGANT, Optim, etc. prior to the actual facility
construction. This has been done for the 6-GeV current configuration of the CEBAF so
that accelerator designers could know in advance where to put the magnets and how to
tune them.

To realize the 12-GeV upgrade, a different configuration is required, with new or
modified parts, higher fields... The constraints are tighter and the accuracy of the
simulations have to catch up.

In whole-accelerator simulations, and because the CEBAF counts more than 2000
magnets, each element cannot be modeled with its entire geometry (coils, steel, current
density...). Instead, each element (magnets, filters...) of the lattice is represented by a set
of relevant numerical values, like the integrated field 'seen’ by the particles traversing it
for example, that tells the code how to take into account the influence of this particular
element while it computes the beam trajectory. It's a form of multi-scale modeling.
Those relevant characteristics must be evaluated for each part, as accurately as possible,
since the setup of the whole accelerator depends on it.

The best case occurs when the parts already physically exist and we can make proper
measurements of their characteristics. Unfortunately, measurements take time, and the
equipment necessary to perform them can be expensive and is not always available. As
a result, even in the case of pre-existing 6-GeV parts, many of the characteristics used to
simulate the role of these elements had to be evaluated by simulations instead of being
actually measured.

Moreover, in the 12-GeV upgrade case, many parts are new or modified, so that their
modeling acquires a very particular importance for it is the only way available to
determine the characteristics that will be used for their integration into whole-
accelerator simulations.

The present study takes place in that context, focusing on a possible improvement of
those local simulations by making them take into account more realistic parameters such
as machining defects.

1.2 - Objective of my work

As the previous section explained, a series of relevant parameters is determined for each
element of the accelerator, either by physical measurement or by simulation of the
element's magnetic field on a local scale, for it to represent the modeled element in
future larger scale simulations.

The local scale simulation tool used in this study (see section 11.3.1.1) takes a large
number of characteristics of the magnets into account: the disposition of the coils as
well as their current density, the geometry of the return steel, magnetic properties of the
steel (editable B-H curve), etc.



However, none of the simulations realized so far with this tool took geometry
imperfections into account. The poles were assumed to be perfectly parallel, their
surface to be perfectly plane... In other words, no machining or assembly defects were
taken into account while defining the geometry of the modeled magnets. Their influence
on the field dispensed by the magnet was therefore not present in the results of the
simulations, resulting in its not being taken into account in larger scale simulations
either.

Since the fields in the magnets of the 12GeV-configured lattice are going to be higher
than they currently are, thus placing their steel into a saturated state in many volumes,
the idea of taking geometrical imperfections into account arose from the concern of
being able to precisely specify the tolerances that were to be required for the new
magnets.

The objective of this study is to realize the first models that would take machining
defects into account, and to gather information regarding their effect on the magnetic
field. Possible results are:

- a better understanding of the current machine and of what has been neglected
so far

- a finer notion of the correlation between the mechanical tolerances that lab
designers specify for the magnets and the undesired field components that can be
expected to arise from those specifications



Il - Strategy

The approach that was first decided is the following. All this process is then detailed
step by step in the next section (11.3- Technical description of the study).

The first step is to get acquainted with the modeling tool and its morphing functions, in
order to be able to introduce geometrical perturbations in pre-existing magnet models.

Then, with the help of my supervisor and according to relevant criteria, a specific
magnet in the lattice is selected for geometric perturbations effects on the field to be
studied using its model. This election is crucial for the results of this study to be of
interest in the design and specification of other magnets.

Once the magnet is chosen and its technical drawing is acquired, design machining
tolerances are evaluated. The idea is to start by determining a tolerance-fulfilling ‘worst
machining case' to work on, to have an order of magnitude of the maximum field
perturbation that the current design is allowing. Once again, different scientific criteria
are taken into account in this case election, for geometrical product specification
intrinsically leaves degrees of freedom in part machining.

Chosen geometrical imperfections are then introduced in the original magnet model.
After processing, field calculations reveal, as expected, the apparition of new magnetic
field components, that were negligible in unperturbed models.

The next and concluding step of the study is to try and establish correlations between
the perturbations introduced and the induced modifications of the field. This paper
mainly focuses on the amplitude of the perturbations, and relates discovered relations
between magnet machining quality and unwanted field components.



111 - Technical description of the study

I11.1 - Description of the modeling environment

I11.1.1 - Software resources
Magnetic calculations

The numerical code used in this study to model geometries and calculate fields is called
Opera 3D. It is written by a British company named Vector Fields [1]. The code has
different modules which correspond to the type of physical values one wants to
calculate (static or varying electric and magnetic fields, thermal and stress analysis... )
and in the present case, the solver used for static magnetic fields is called Tosca.

The scheme for the use of those solvers is the standard pre-processing/solving/post-
processing one. Here it is as explained on the company's website:

Electromagnetic simulation

2D or 3D modeller

Create model orimport
model

Static fields simulator

S Post process results
Time varying fields simuiator

Application-speciiic solvers

Fig. 11.1: Utilization scheme for the Opera 3D numerical code

The most recent pre-processing tool is called the 'Modeller'. It allows you to create 3D
volumes and perform simple Boolean operations on them or either import the geometry
of your system from another CAD tool. It can also create coils of any shape, and one
defines the current that runs through them. In the end, once the required geometry as
well as the field sources are defined, a mesh generator based on the ACIS kernel fills
the model with finite elements.

Then Tosca, a finite element code, computes the magnetic field in every part of the
model using Newton-Raphson relaxation to deal with the steel, whose magnetic
properties are non-linear.

An example of a calculation report emitted by the code is available in annex [A4].

Vector Fields

software for electromagnetic design

Fig. 11.2: The Vector Fields logo




Post processing

The process used to study the field in the solved models is described in details in section
11.3.5. It uses the Opera 3D post processor for initial field evaluations, whose result are
treated in spreadsheets [2] [3] afterwards. Those have mathematical and statistical
calculation capabilities that are necessary to make the field evaluations exploitable.
Their graphical representation functionalities are also very useful when it comes to
comparing models, fields...

The data coming out of the post processor is converted into a spreadsheet-friendly
format by a Perl script written by the student. An shortened example of a post processor
output file as well as the Perl script are available in annexes [Al] and [A2].

I11.1.2 - Morphing tools

Since the objective of the study is to take geometrical imperfections into account, it is
necessary to get familiar with the options offered by the code that can be used to model
such imperfections.

The Opera 3D modeler offers different functions for model distortion.

The main ones are:

- twisting, defining an axe with two points and an angle of torsion 4

fig. 11.3: Original Block
used in illustrations

Fig. 11.4: twisting operation in
the modeler

- stretching, again defining an axe with two points and an axial displacement for each
of them

. Fig. 11.5: stretching illustration



- bending, creating a local coordinate system to
define the bending plane, and then choosing an
angle and a radius for the bend

fig.11.6: Bended volume

- the modeler also has a 'general morph'

option, which performs any transformation to each of the coordinates, as long as a
Cartesian equation is available for that function, which must be properly defined in the
treated volume coordinates range.

Change Body by Morphing

u Mapping|U
Y Mapping |5?30042]]"[sqrt[1 -u*u/(7.577.5))-. 7356762573004 2) v|
Wi M apping |W

v]

[ u] ” Cancel ” Apply ” Preview ]

fig. 11.7: Example of a general morph. Here the 'Y’ coordinate is modified to
follow the curve of an ellipse.

I11.1.3 - Hardware resources

In order to be able to realize the modeling, meshing and solving operations that this
magnetic field fine study requires in good conditions, an appropriate workstation has
been used. The calculations made by the student were realized on a machine with the
following characteristics:

Make : Dell

Model : Precision PWS490

Processor : Intel Xeon X5355 @ 2.66 GHz (QuadCore)
Memory : 16 GB of RAM

Operating system : Microsoft Windows XP



Professional x64 Edition
Version 2003, Service Pack 2

Apart from these calculation resources, the student was provided with the appropriate
means of communication with the other scientists: email, telephone, ...
In addition, the workplace was equipped with a common fax, copier and laser printers.

111.2 - Description of the part chosen for the study
111.2.1 - Context

The 12-GeV upgrade as we have described it from the outside in section 1.2.2 has a lot
of repercussions on a local scale. As well as some parts are added, others are modified.
Figure 11.8 shows how some magnets of the spreaders and recombiners will be added
some more return steel in order to be able to support more field lines as the field they
shall produce in the 12-GeV configuration will drive them into saturation. Figure 11.9
shows a prototype.

“C” dipole “C>H dipole

fig. 11.8: Schematic representation of the return steel
addition in the spreader and recombiner magnets

with added H-steel

=> The part elected for this study is one of those extended magnets.

I11.2.2 - Magnet description

The current form of the elected magnet has the codename: MABG6R.

'MAB' simply stands for Magnet AB, since the numeration chosen for the magnets is
made with letters (AA, AB, AC...). The number '6' indicates that the magnet is situated
on the 6™ arc, which corresponds to the third pass in the second (western) arc. Finally
the 'R’ stands for Recombiner, as the magnet is part of the second ( see Figure 11.10)
recombiner. Figure 11.11 situates one of the MAB6R magnets. The number '03' is a local
numeration, for this very magnet is used several times.

10



Injector 2nd 1st Spreader

Recombiner

S
E: @3
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Transport

1st Recombiner

fig. 11.10: Scheme of the CEBAF indicating the

Beam

positions of the spreaders and recombiners. Switchyard

As the magnet is studied here in its extended form, its name is abbreviated in ABH,
where the letter 'H' denotes the fact that this 'C' magnet is somewhat made an 'H' magnet
by its being extended. The engineering drawings for the original magnet and its return
steel respectively bear numbers 22161-0101 and 22161-0002 [8].

Z9

e | - MABBRO3 | | MO
MAF4RO3| |*MB

*xMB
-MAIZR03

fig. 11.11: A part of the second recombiner drawing,
locating an MAB6R magnet

111.2.3 - Criteria for the choice

The main criteria that has led to the election of the MAB6R magnet is that once
extended to meet the 12-GeV lattice requirements it will be the magnet with the
strongest field in the whole lattice (~14kG). It was therefore assumed that any effect of
the geometrical perturbations that were to be taken into account in this study would be
magnified by the steel saturation.

A couple of other arguments added to this choice's interest:

- the geometry of this dipole is rather abundant, as more than 30 other dipoles in
the lattice only differ from it by their current density. Since an evaluation of the
correlation between current density and the effects of machining defects enters in this
study, the latter gains in application range.

- although quadrupoles are more numerous in the lattice than dipoles (about
twice as numerous), the number of magnetic field harmonics measurements available

11



for them make their study less critical in comparison to the dipoles for which no direct
harmonic measurement has been realized so far.

- the reasonable size of the magnet (some of the arc magnets are about three
times more voluminous) helps constructing numerical models with reasonable memory
requirements, which also enhances the calculation time as well as the pace of the study.

111.3 - Geometrical specifications of the original part
111.3.1 - Concern

The first step in the actual study of the effects of geometrical imperfections on the field
induced by the studied dipole is to get familiar with the specifications applied to the
latter. Since the 'AB' dipoles haven't been extended into 'ABH' yet, the available data
are those relative to the original, non-extended dipoles. It is of fundamental importance
to know what the functional surfaces are, as well as the value of the tolerances that were
specified for them.

In a dipole magnet, the functional surfaces are obviously the pole tips, where the field
lines come out of the return steel to cross the beam trajectory and bend it. The pole tips
are the most tightly specified parts since any variation on a pole tip surface directly
affects, to an extent that this study is trying to determine, the field seen by the particles
and the eventual beam quality.

The steel section is very important too since it determines the maximum magnetic flux
density that the steel can support and when it saturates. That is the reason why it was
decided that the return steel should be extended for the accelerator upgrade, as
explained in section 11.3.2. However, a conservative design regarding the steel bulk is
cheap enough and sufficient to eliminate the need for a finer study of the section value.

In the case of the pole tips however, there is no limit to the price that a vendor can ask
for if the surface quality required is high enough. It is therefore crucial to determine an
optimum between the field quality that is needed in the dipoles and the surface quality
for the magnet poles that the laboratory is willing or able to pay for.

The object of this study is the extended 'AB-H' magnet, which differs from the currently
used 'AB' magnet by its having a thicker return steel section, and thus a higher induced
field, but is similar to it in every other dimensional extent.

Let us then examine the specifications that were emitted while designing the current
'‘AB' magnet.

Figure 11.12 and 11.13 show the parts of the core detail drawing where the functional
surfaces are specified. The full drawing is available in annex [A6].

Note:

All dimensions are given in inches, with a £0.01 in tolerance if their value is given with
two decimals, £0.005 in if it is given with three.

The full length of the core (37.80 in, implicitly £ 0.01 in) was indicated in another view,
not reported here for it held no functional specification.

The following representations have been rescaled to fit the page.

12



S

E

T
RALA
POLE TIP =
SURFACESX 260
1.020
[z + 0,002 _ ) )
_Eh , Fig. 11.12: Side view of the core of the 'AB' magnet.
%’E@E 52 : : . Note its characteristic 'C' shape. The beam travels through
3.050 (TYE) the magnet between the two surfaces marked '‘POLE TIP
125 (8.62) SURFACES' along a path (treated in section 11.3.5.2) that is
Ly : roughly perpendicular to the drawing plane.
3.65 (TYR) N i
— 10.020
<
g
=}
X

Fig. 11.13: Front view of the
core.

111.3.2 - Tolerances

Local sizes
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1.12)

This specification requires that any measurement of the gap width in a vertical section
plane of the dipole return a value between 1.018 and 1.022 inches.

Flatness

—B—|
| 005
LT\ -wsiriom (see fig. 11.12)

The specification first names the upper pole simulated datum (theoretical plane
associated to the real pseudo-planar surface of the pole tip) 'B'".
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Then the upper flatness specification requires that the whole surface of the pole tip be
comprised between two theoretical parallel planes .005 inches far from each other.

The lower specification adds to the first one another condition, according to which each
1-in® surface on the pole tip must comply with a 0.001-inch flatness tolerance. This
helps avoiding local abrupt variations without having to reduce drastically the tolerance
for the whole surface.

Profile of a surface (see fig. 11.12)

This specification requires that the specified surface belong to a three-dimensional
tolerance zone made of two surfaces whose theoretical profile is defined by the datum
reference (B in this case) and which are distant from each other by the tolerance value
(.002 in here). Since B is a plane, and after broaching the topic with the engineering
service, it was concluded that this specification meant that the lower pole tip had to
belong to a tolerance zone made by two theoretical planes, parallel to each other and
parallel to B, .002-in apart from each other, which is equivalent to a parallelism
specification.

—] 0.005 ]

ON ¢ ITEM
Straightness € G@ (see fig. 11.13)

According to the authors of the drawing (Annex [A6]), the "€ " indication under the
two specifications indicates that the straightness condition applies to the
centerline of each pole tip (See Fig. 11.14), in spite of the mention being made of

elements @ and @

The indications regarding the use of the ~._ Pole tip centerline
straightness specification found in the
literature supplied to the student [4] state: "
Straightness tolerance is typically used as a
form control of individual surface elements
such as those on cylindrical or conical
surfaces. Since surfaces of this kind are
made up of an infinitt number of .
longitudinal elements, a straightness

requirement applies to the entire surface as controlled in single line elements in the
direction specified. [...]The straightness tolerance must be less than the size tolerance. "
Since in this case the size tolerance comes to be tighter than the straightness tolerance, it
has been accorded that the straightness specification was included in the flatness
specification. The former will therefore be ignored henceforth.

. Fig. 11.14: lllustration
of the centerline notion
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Parallelism (see fig. 11.12)

This specification states that the toleranced surface must fit between two parallel
theoretical planes, also parallel to the theoretical datum plane 'A’, and 0.002 in far from
each other.

The vertical faces of the poles are not functional surfaces to the same extent as the pole
tips for they are expected to be tangent to the field lines and therefore not as influent on
their action on the beam as the pole tips are. Consequently, this specification will not be
exploited in this study, which will therefore focus on the effect of pole tips perturbation.

Surface texture

The surface texture specifications will not be taken into account in this study for the
following reasons:

- the dimensions that surface texture specifications deal with are one order of
magnitude smaller than the tiniest values used in form specifications. This has a double
consequence. Firstly, those perturbations are expected to have a smaller effect on the
field than greater scale ones. Secondly, those dimensions reach the limits of our
modeling capabilities, so that their being taken into account should be the object of a
separate study.

- surface texture defects are expected to be either noise-like (randomly spread
over the surface) or periodic (like the mark of milling), in which case the effects of the
induced local perturbations would cancel each other as the field is integrated over the
beam path to take the whole dipole effect into account (see sections Il.1.1and 11.3.5.2).

111.4 - Finding a ‘worst' machining case
111.4.1 - Concept

Once considered the specifications that were applied to the dipole and the tolerances
they expressed, it was decided as explained in the previous section that straightness,
vertical parallelism and surface-texture specifications would not be exploited in this
study, which would be focused on the flatness of the upper pole, the profile of the lower
pole (which was said to be equivalent to its parallelism to the upper pole) and on the
local sizes that were specified for the gap.

Modeling operations started with the following concern: now that the tolerances on the
critical parts of the dipole are known, the first question that has to be answered is To
what extent is the current design allowing the field to be perturbed from its theoretical
value?

It was then decided to model a dipole that would meet the tolerances, but with a play as

low as possible - a 'worst machining case' - whose field, once evaluated, would reveal
the nature and order of magnitude of the field perturbations that are being dealt with.

15



The present section presents the model that was adopted for that function, after a phase
of experimentation on modeling possibilities and limitation, along with the perturbation
that were applied to it.

111.4.2 - Presentation of the model i

Figure 11.15 shows an overview of the geometry of the
'ABH' model, realized in the Opera modeler according to

the design specifications for the 'AB' magnet and for its —-
steel extension.

Since the perturbation applied to the pole tips are of the
order of magnitude of the tolerances that were applied to
those surfaces (i.e. ~10° in), they are not visible on an ']{

overview of the magnet. : .
Fig. 11.15: Overview of

. . . . . the first perturbed
Specific steel magnetic properties were specified (Fig. model of the ABH

11.16) for the behavior of the modeled steel to be as close as magnet
possible to the steel that is actually used to build the
CEBAF magnets.

4 B againzt H interpolated
20000
10000
=
= I
10000
20000
T T T T | T T T T I T T T T | T T T T | T T
1000 -B00 1] 500 1000

H [Dersted]

Fig. 11.16: B-H curve defining the properties of the steel used in the
calculations, obtained from measurements on steel taken on a section of steel
from an ingot used in making CEBAF magnets.
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111.4.3 - Perturbations applied

This paragraph deals with the perturbations that were chosen to be applied in this
model.

Transverse perturbations

Let us consider a transverse plane, perpendicular to the general beam direction, in order
to discuss the nature, extent and justification of the perturbations that are perceivable
transversally.

Figure 11.17 gives a schematic representation of the shape of the perturbed pole tips in a
transverse plane.

Since the parallelism tolerance () is a relative property, it was decided that the
reference 'B' on the upper pole was going to be modeled horizontally for the parallelism
defect to be easily managed by the orientation of the lower pole.

This election implies that the upper pole has a transverse flatness default of 0.002
inches, which is the maximum tolerated since: 5
- itis only 4 inches wide —
’ : i 005
- the flatness default cannot exceed 0.001 in per inch, |£/ —oott000 ]
- the tangent plane has to be horizontal for the flatness and parallelism defects to
be treated separately.

The upper pole flatness defect was at that stage modeled by a parabola, since it was
assumed that this convex shape would favor the divergence of the field lines on the
sides of the poles, thus magnifying the effect of the tip non-planarity on the field.

Upper pole

Equations of the slope and parabola:

~— 1 0002 | y= 200254
0 -“.'!'_'“_'--.'JII: 508
1.018 25557 1.022 y =19685039370079-107* - x?
] 0.002
4.000
10.16
Lower pole Fig. 11.17: Schematic representation of the

pole tips' perturbed shape
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The parallelism specification that was applied to the lower pole by means of the profile

specification () was taken into account by 'tilting' the lower pole tip with a
precisely defined slope so that its tip can be exactly 0.002 inches non-parallel to the
upper pole's 'B' reference datum plane: a tangent plane that was made horizontal on
purpose, as explained before.

In that configuration, one can verify that the local size specification is verified
everywhere.

Longitudinal perturbations

In a first step, it was decided that longitudinal perturbations would not be taken into
account, for modeling reasons. In fact, the vertical symmetry of the model was broken
by the introduction of the transverse perturbations, which caused the model size, and the
calculation time thus, to almost double. Introducing longitudinal perturbations would
break the longitudinal symmetry, doubling the solver burden once more. Since
perturbed models took around 15 hours to solve, it was decided that the study would
start with transversal perturbations only.

From another point of view, the longitudinal axis is parallel to the machining direction,
so that most of its defect content is likely to be related with vertical milling marks,
which was said to be negligible in the surface texture paragraph of the 11.3.3.2 section
on tolerances.

In the end, longitudinal perturbations are not treated in this study.

111.5 - Field evaluation method
I11.5.1 - Definition of multipoles
Introduction

When an accelerator is constructed, the nominal trajectory of the particle beam is fixed.
This trajectory may simply be a straight line, as is the case in linear accelerators. In
circular machines such as the CEBAF in its entirety, however, it has a more complicated
shape consisting of numerous curves connected by straight sections of various length
(the spreaders are a good example of that complexity). The beam follows the resulting
path until it is accelerated to the required extent and is sent to the halls. But on another
scale, the trajectories of individual particles within the beam always have a certain
angular divergence and without further measures the particles would eventually hit the
wall of the vacuum chamber and be lost.

It is therefore necessary first of all to fix the beam trajectory, in general an arbitrary
curve and then to repeatedly steer the diverging particles back onto the ideal trajectory.
The latter, termed the ‘orbit’, is fixed by the construction of the accelerator, taking
numerous parameters into account, such as the energy of the particles, a reasonable
steering radius for them given the field strength that can be reached by the magnets and
the desired/available size for the accelerator facility... In most general terms, the

steering is done by means of electromagnetic fields (E and B) in which particles of
charge e and velocity v v experience the Lorentz force:

F=e(E+VxB) (2)
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At relativistic velocities, the effect of magnetic fields is so strong compared to the effect
of technically achievable electric fields that those are mostly employed at very low
energies.

Decomposition around the ideal trajectory

To describe the motion of a particle in the vicinity of the nominal trajectory, the
laboratory frame is not the most appropriate, given the smallness of the beam transverse
dimension compared to the radius of curvature of the trajectory. Instead, a local
Cartesian coordinate system K = (x,y,s) whose origin moves along the trajectory of the
beam is used (Fig. 11.18).

y
A Fig. 11.18: Coordinate system to
beam direction describe the motion of particles in the
vicinity of the nominal trajectory
X
S

The axis along the beam direction is s, while the horizontal and vertical axes are labeled
x and y respectively. For simplicity we will assume that the particles move essentially
parallel to the s-direction, i.e. v = (0,0,vs), and that the magnetic field only has
transverse components and so has the form B = (By, By, 0). For a particle moving in the
horizontal plane, through the magnetic field there is then a balance between the Lorentz
force Fx = -evsBy and the centrifugal force Fr = mve2/R. Here m is the particle mass and
R is the radius of curvature of the trajectory. Using p = mvs, this balance of forces leads
directly to the relation:

1 e
Rixy,e por®¥s ©

There is a corresponding expression for the vertical deflection. Since the transverse
dimensions of the beam are small compared to the radius of curvature of the particle
trajectory, we may expand the magnetic field in the vicinity of the nominal trajectory:

dB, 1d°B

B,(X)=B,,+—LX+—= yx2+ldsBy X3 + (4)
y Y dx T2 dx? 3 dx®
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Multiplying by e/p:

dB d’B d°B
EBy(X)ZEByoJFE—yX+13 > X2+£E L+
p p p dx 2'p dx 3 p dx
S S RN YoVC R
R 2 3l
Dipole  Quadrupole  Sextupole Octupole

The magnetic field around the beam may therefore be regarded as a sum of terms, called
multipoles, each of which has a different effect on the path of the particles.

Interpretation

The notion of multipoles is of fundamental importance in order to understand the results
of the present study, since most of its conclusions will deal with the extent of a
multipole's contribution in the field. This notion has a variety of interpretations, and one
should not simply stick to the representation in terms of a mathematical expansion.
From this perspective, one should however keep in mind two concepts:

- the behavior of the field components with respect to the distance from the ideal
beam trajectory, which is a constant for the dipole, a linear slope for the quadrupole, a
square dependence for the sextupole...

- the linear nature of a sum which confers intrinsic independence to the different
components of the magnetic field

The different names that are given to the terms of the expansion clearly come from the
homonym magnets. In the case of a dipole magnet like the ABH for example, the field
lines are straight and parallel between the poles (disregarding edge effects) which means
that their density - the magnetic flux density 'B' - is constant, as the dipole term in the
expansion was. In a quadrupole magnet, the field lines have the shape indicated in
figure 11.19. One sees that they get closer and closer to each other as the distance from
the center raises, and this density growth is actually linear, as was seen in the
‘quadrupole’ term of the mathematical expansion of the field.

Fig. 11.19: Shape of the field
lines in a quadrupole magnet
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This correspondence between mathematical and physical tools is the basic concept that
enables accelerator physicists to build the lattice, the sequence of magnets which
constitutes the accelerator along with their set points, so that each mathematical
component of the field seen by the particles along the beam path can be managed with a
real and concrete magnet type.

111.5.2 - Measuring multipoles
Introduction

As was mentioned in the previous section, the field multipoles have a relatively wide set
of interpretation perspectives. In order to understand the way they are measured, treated
and compared in this study it is necessary to get acquainted with the cylindrical
representation of multipoles.

The mathematical expansion presented in section 11.3.5.1 was expressed in a Cartesian
coordinate system and the distance from the nominal trajectory was expressed in terms
of the abscissa along the horizontal axis x. However, the smallness of the beam
transverse dimensions compared to the radius of curvature of the trajectory is respected
in every direction normal to the trajectory, which confers to the system a cylindrical
complexion that is better described in polar coordinates.

The measurement and diagnosis of multipoles underwent i -
somewhat of a revolution around 1965 when J. Cobb and b //
R. Cole used a fast rotating coil to measure quadrupoles at ' A W
SLAC (Stanford Linear Accelerator Center) in California bl

[5]. The idea is based on the description of magnetic 2 v S

fields in terms of their Fourier harmonic expansion.
Picture a coil (Fig. 11.20) rotating with constant angular
velocity. One side of the coil is placed colinear with the
axis of the magnet, the other side sweeps out a circle of
constant radius. The voltage seen on an oscilloscope is
proportional to the rate of flux cut by the coil. If the
magnet is perfect, a perfect sine or cosine wave should be  Fig. 11.20: Illustration of the field
seen at a frequency equal to the revolution frequency fora ~ measurement using a rotating coil
dipole, twice the revolution frequency for a quadrupole, etc.

The field expansion in cylindrical coordinates is generally expressed:

B,(r,0)=Y K, r"*sin(n6-c,) (5)
n=1

B,(r,6) => K' . r"*cos(nd-«,) (6)
n=1
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Field evaluation in simulations

The numerical code used in this study [1] to model the dipoles and compute their field
has a feature that allows to measure the quality of the field induced by modeled magnets
in a way that is very similar to the rotating coil technique, so that it is possible to
compare the results of calculations with measured data when available.

In the real measurements that are made at Jlab, the coil is rotated around the beam path
as described in the previous paragraph and then moved longitudinally to measure the
field along the beam trajectory. As the quantity measured is the amount of flux cut by
the coil, all the harmonics are summed and cannot be measured independently. More
advanced devices are able to separate the harmonics via a set of multiple dedicated
coils.

In the simulated models, the field is evaluated along a circle in a plane normal to the
beam trajectory (Fig. 11.21). The circle is then displaced along a trajectory that follows
the expected beam path - e.g. a circular path within the bending dipole field - and the
field is evaluated at each step. A Fourier fit is computed from the circular field
evaluation along each circle, simulating the values that would be measured for the field
multipoles using rotating coils in a real magnet.

Vei

Fig. 11.21: Representation of the 1-cm circle around
which the fields are evaluated in the simulated models
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The script used to generate the circles along the beam path can be found in annex [A3].
The file that is being presented has been shortened for paper economy reasons and only
presents the first 5 cm and the last 5 cm of the 75cm-long defined trajectory.

The actual coordinates of the points defining the circles as well as the harmonic values
from the Fourier fit applied to the fields evaluated on the circles are given in annex
[A1].

As mentioned in section 11.3.1.1 - Software resources, the format in which the
harmonics are presented in the post processor output file [Al] is quite incompatible with
the syntax required for treatment with a spreadsheet editor such as those used in this
study [2] [3]. A Perl script, given in annex [A2], was therefore edited by the student to
generate a double-entry array presenting the value of each harmonic on each circle all
along the beam path.

The circles used to evaluate the '"ABH' magnet models have a radius of 1 cm. This value
has been decided upon according to several criteria:

1) The radius cannot be much larger for the magnet poles are only 1.295 cm
away from the beam trajectory (and thus from the center of the circle) and a circle
evaluating fields too close to the poles would see its evaluation accuracy reduced due to
irregularities in the mesh inherent to a change of medium.

2) Since the fields around the circle are evaluated by nodal interpolation, the
perimeter of the circle has to be sufficient for the number of finite elements available for
the interpolation along the circle to satisfy the sampling theorem.

The Nyquist-Shannon sampling theorem states that:

"If a function f(t) contains no frequencies higher than W cps*, it is completely
determined by giving its ordinates at a series of points spaced 1/(2W) seconds apart."

*: Cycles per second - modern unit is Hertz (Hz)

Here the application of this theorem is geometrical instead of temporal: since we are
evaluating cyclic functions around a circle, W won't be expressed in terms of cycles per
second but in terms of cycles per perimeter of the circle. Since the multipoles are
evaluated up to the 20-pole (which is then the one with higher frequency), W here is 10
cycles per perimeter. For a 1-cm radius circle, the perimeter length is about 63 mm.
Therefore, the field has to be evaluated at least every each 1/(2W)*63 mm = 3.15 mm.
Since in the models studied the mesh size is 2.5 mm in the gap, the sampling theorem is
verified with a 1-cm radius circle.

3) Equations (5) and (6) show that each 2n-pole term is proportional to r"* so

that even evaluations made with a large circle can eventually lead to an evaluation at a
beam-radius scale.

23



-14193.0

-14184.0

-14185.0

-14186.0

-14187.0

-14188.0

-14185.0

-14200.0

-14201.0

¥eooord 10 0.30901655 -0.808017 -0.808017 0.30901699 1.0

Yooord 00 05951056582 0.58778525 -0.5877333 -0.9510565 oo

Zcoord 00 oo [IR1] 0.o oo oo
___ Component BY, from huffer: Circle, Integral = -89184 228422077

Fig. 11.22: Field evaluation around a 1-cm radius circle situated in the center _
of an unperturbed model of the 'ABH' Dipole. One can clearly see the ____Yefrtf?lffl?@?
cosinusoidal shape that was mentioned in the introduction of this section. S

111.5.3 - On skew multipoles

Before the research proceeding goes on with the presentation of the first results in the
next section, a few precisions about field multipoles should be considered in order to
clearly understand those results.

We have seen in the previous section that the field induced by a perfect 2n-pole magnet
could be described as a theoretical say, cosine wave. Basic notions of trigonometry tell
us that a rotation of ©/2n of the coordinate system implies that a term be expressed with
a sine if it had a cosine and vice versa. This has a very important repercussion on the
practical field for it implies that the field of a perfect 2n-pole magnet can be described
by, say, a sine wave in only one coordinate system or in other words, that in a given
coordinate system, we generally need both sine term and cosine term to describe the
field content at any given order n because of the angular degree of freedom around the
longitudinal axis.

In reality, magnets are never perfectly vertical or perfectly horizontal. There is always a
component of the field that is not aligned with the reference, intrinsic to the magnet mis-
orientation. Moreover, as the fields induced by the magnets are never quite perfect, even
in their own coordinate system, the terms representing 'tilted' content - which are called
the skew terms - help the accelerator scientists to describe unwanted components of the
magnetic field.
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IV - Results
IV.1 - Effect of the introduction of a perturbation

The goal of this section is to obtain a first look at the effect that the introduction of a
geometrical perturbation in the numerical model of the studied dipole has on its field.
For this purpose, the 'Worst Machining Case' (WMC) model, defined in section 11.3.4,
will first be compared to the original, non-perturbed model that is currently being used
to simulate the 'ABH' magnet in the accelerator simulations (cf. 11.1.1).

IV.1.1 - Presentation of the original model

From now on, the models will be described in a coordinate system in which the origin is
placed in the center of the gap (equal distance from the pole tips and from their
borders), z is the longitudinal axis and x and y the transverse directions respectively
parallel and normal to the pole tips.

As section 11.3.2 explained in details, the '"ABH" magnet is a 'C' shaped magnet that was
extended to a pseudo 'H' shape to support superior magnetic flux density. Since the
model being used currently to simulate the field that is induced by this magnet is not
perturbed, the steel geometry in it has two planes of symmetry: the z=0 and y=0
planes. Consequently and for computation time reasons, the model that is really being
solved in non-perturbed calculations only includes the {z > 0, y > 0} quarter of the steel.
Figure 11.23 presents this model along with another one that includes the whole
geometry but which is never used for calculations.

Fig. 11.23: Two models including: the full geometry of the steel (left), only
one quarter (Right)

In the perturbed WMC model, only the symmetry with respect to the z =0 plane is
conserved since the poles are not perturbed equally.

IV.1.2 - Analysis of the perturbed model

The multipole terms of the field expansion (11.3.5) increase with the distance r from the

beam orbit with an order r"*. Since the beam transverse dimension is small compared to
the magnet gap, with core Gaussian under 0.6 mm sigma throughout [6], the orders for
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n > 2 will be neglected for now in front of the two first terms. Since the dipole skew
term is null and its normal (not skew) term is easily taken into account in real
measurements given its direct effect on the beam trajectory, only the quadrupole term is

going to be taken into account at first.

Observations

Figure 11.24 and 11.25 show respectively the cosine and sine term of the quadrupole
harmonic of the field that is 'seen’ by the beam along its trajectory in the magnet.

Cosine quadrupole term vs z in perturbed model
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Fig. 11.24: Cosine quadrupole term evaluated along the beam path in both the 'Worst Machining Case' model
and the original non-perturbed model.

As was explained in the paragraph introducing the coordinate system, the origin is
situated in the center of the gap and z is the longitudinal axis. Since the models present a
symmetry with respect to the z = 0 plane, only the z > 0 part of the graphics is presented,
the other part being identical and in the opposite direction.

The steel body of the magnet ends at z = 48.006 cm (37.8 in).
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One can see a slight offset in the cosine term value while the beam is still between the
poles, but since the tendency is not modified and the lattice is equipped with numerous
normal ‘cosine oriented' quadrupole magnets, this effect is easy enough to correct for
this study not to focus on it.

Sine quadrupole termvs z in perturbed model
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Fig. 11.25: Sine quadrupole term evaluated along the beam path in both the WMC model and the original non-
perturbed model

Several interesting phenomena are observed here. While the non-perturbed model had
all its skew terms artificially set to O for the magnet mid-plane (y = 0) was a boundary
for the model (and thus the boundary condition stated that the field lines had to be
normal to the mid-plane), the perturbed model, in which this symmetry is broken,
shows:

- a constant body term of several Gauss

- a peak at the end of the steel, one order of magnitude higher than the body
value
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Comments

As was explained before, the lattice is supplied with numerous normal quadrupole
magnets, so that the normal quadrupole perturbation is not much of a problem for it can
be corrected easily. On the other hand, skew quadrupole magnets are rare and most of
them are situated in the linacs, already set to compensate for the skew terms introduced
by the imperfect superconducting RF cavities. There are only two skew quadrupoles in
the CEBAF outside the linacs, in the eighth and ninth spreaders. These are used to
compensate for all the accumulated error outside the linacs, which represents an
equivalent of over 600 cumulated meters of dipole length before the ninth spreader.
They are set to reduce x-y coupling to the part per thousand level in the succeeding arc.
Typical values are 500-800 G - which is roughly equivalent to 1 Gauss per meter of
dipole. Dipole values are about 40% of those considered in this work (see section
11.4.2), so 2.5 G per meter of dipole would be typical in the upgrade if disassembling the
dipoles to modify the coils and reassembling with H steel do not alter performance.

First normal multipoles are useful: dipoles are used to steer the beam, and quadrupoles
to focus it for example. But skew multipole terms play an important role in beam
deterioration throughout the accelerator. At 6 GeV the distribution of the particles in the
beam transverse dimension is Gaussian and the beam diameter is easily kept under
0.2mm sigma (core Gaussian) [6] throughout. Halo with a quadratic (not Gaussian)
transverse profile is sometimes introduced accidentally in the injector and interacts with
higher multipoles throughout the machine. As the energy raises (the upgrade purpose is
to double it), the synchrotron radiation becomes significant in the arcs and to the initial
distribution is added a halo even without injector error. Again, this halo is a
quadratically-distributed noise zone around the Gaussian that increases the beam
transverse dimension. As was seen many times before, multipole terms get higher with
the distance from the center of the beam and as the beam transverse dimension
increases, so does its sensitivity to multipole effects. Beam section increase and
sensitivity to skew multipole content are two parasite phenomena which favor each
other.

Since there are hundreds of dipoles in the lattice, their introducing a hitherto neglected
skew term must be studied in details.

Proposal

At this point of the study, it appears clearly that modeling the magnets using only a
quarter of the steel for symmetry reasons was too bold an assumption. However, we
don't know yet to what extent the skew terms observed in the perturbed model are due
to full-height steel modeling or to the actual perturbation.

The next step should therefore be to compare our perturbed model to an unperturbed

model comprising the full height of the steel, thus getting rid of the boundary condition
that zeroed all skew content of the field in the previous simulation.
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IV.1.3 - Comparison with a full-height, non-perturbed model

Figure 11.26 shows how the full height of the steel is comprised in the non-perturbed
model that is going to be used henceforth, while the longitudinal symmetry that allows
us to keep calculation time reasonable is still conserved. Quarter-steel models took
roughly half the time half-steel models take to solve, which means that the calculation
time passed from around 6-7 hours to around 15 hours. One should keep in mind that
each of the simulations presented in this study is the result of several hours of modeling
and meshing in the case of perturbed models, plus one night of calculation on a general
basis.

Fig. 11.26: 3D representation of the two unperturbed models, respectively assuming a double symmetry
(left), or only one longitudinal symmetry (right).

One can observe on figure 11.27 that:
- the ~3 Gauss shift in the zone between the poles is conserved
- the unperturbed model now shows a bunch of peaks in the pole edge

whereabouts

Interpretation

Although the end of the pole tips are likely to have an influence on the field, the high
frequency peak shape that is observed is very unlikely to have any physical relevance.
These oscillations are more probably caused by the insufficient mesh density outside the
gap zone. While the finite element size is 2.5 mm in the gap, it changes to 5 mm when
the beam gets out of the magnet. Although this edge effect is interesting, the study will
first focus on the body field whose calculation is more reliable for now (cf. 11.3.5.2).
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Fig. 11.27: Skew quadrupole term evaluated along the beam path in both the WMC model and the full-height non-

perturbed model

Proposal

After the influence of the perturbation is confirmed by the comparison with other
models, perturbed to the same extent but with different shapes, the study should focus
on the determination of the correlation between the amplitude of the perturbation and
the extent of the skew quadrupole term. In reality, the magnets will probably not have
exactly the non-planarity that has been assumed in the WMC model. It would therefore
be interesting to be able to evaluate the field defect that is to be expected from a given
planarity of the pole tips.
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IV.1.4 - Comparison with other perturbed models

Presentation of the other perturbed models

Figure 11.28 presents the shapes that were used to perturb the Testl and Test2 models.
They were mostly chosen to test asymmetric and non-linear shapes, without taking into

account their being realistic or not for the moment.

Upperpole
“ 0.002
1.022 1\1.018 2.53572
59588 :I 0002
4.000
10.16
Lower pole
Testl 1.022
Original Model : Parallel planar poles
Testl : Parabolic convex upper pole,
cosinusoidal lower pole
Test2 : Parabolic convex upper pole,
sinusoidal lower pole (1/2 period)
WMC : Parabolic convex upper pole,
tilted planar lower pole
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Fig. 11.28: Presentation of the two
additional perturbed models that
were used to verify the apparition
of a skew term in the zone between
the poles.
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Observations

Figure 11.29 shows that a skew term is observed in each model and that they all have
very similar values, although the sign is opposed in Test1.

Comparison of the influence of different perturbed models
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Fig. 11.29: Skew Quad term over the length of the pole tips for the WMC perturbed model
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Conclusions

It is now confirmed that the geometrical perturbation of the poles creates a skew
quadrupole term in the gap of the dipoles. Its sign seems to be related to the relative
symmetry of the perturbations.

The arguments that led to decide upon a convex parabola and a tilt for the WMC model
were more mathematical than practical:

- the convex shape was assumed to favor the divergence of the field lines

- the tilt was intended to introduce asymmetry and it represented the non-
parallelism of the poles.

Although the pole tips are indeed very likely to be somewhat non-parallel in reality, the
convex shapes that those models present are very unrealistic on the contrary.
When a surface is milled vertically, the two main causes for shape defects are the
orientation of your mill and the quality of the guiding. Since the latter only has a
longitudinal effect that is not taken into account in the present study, let us focus on the
former:

- if the mill is tilted with respect to the longitudinal axis, the machined surface,
as planar as it may be, will end up being tilted by the same amount

- if the mill is tilted with respect to the transverse axis, the machined surface will
be a concave ellipse instead of a plane
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Since the apparition of a tilt or an ellipse instead of a plane is independent from the sign
of the mill orientation defect, one can conclude that those form defects are always going
to be present on the pole tips, to some extent.

Proposal

Now that the influence of geometrical perturbations has been qualitatively established,
the next step in the research progress will be to determine quantitatively the correlation
between the amplitude of the geometrical perturbation and the amplitude of the induced
field perturbation.

A model presenting a concave ellipse and a tilt should be used for this purpose.

V.2 - Effect of Field Intensity

Before the research process goes on with the quantitative study of the influence of
geometrical perturbations on the field, a parallel study whose purpose is to verify an
initial assumption will be presented.

Initial assumption

As section 11.3.2.3 stated, the '"ABH' magnet was chosen for this study because it was
going to induce the strongest dipole field in the 12GeV-set lattice (~14kG). It was
assumed that the steel saturation occurring at those fields would favor field defects and
make the study more easily readable.

Verification process

To verify this assumption, it was decided that the initial perturbed model would be
solved using different current densities in order to see the tendency of the field
perturbation with respect to steel saturation. Since the magnet is never going to be used
with higher current than its 12-GeV nominal current |, it was decided that the model
would be solved for the following values of the current: .251, .375I, .51, .625I, .75I,
8751, | (already solved).

Figure 11.30 presents the results of these calculations. A unique value that would
represent accurately the field in the gap of each model was needed. Since the previous
section showed that the quadrupole term of the field was rather constant far from the
edges, an average of the skew quadrupole term of the field was computed for each
model over the z =0 to z = 20 cm portion of the beam trajectory.

With an average around 15 h of calculation time for each model, solving them all took a
little more than 100 h.
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Observations

Average Skew Quad vs Current Density
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Fig. 11.30: Average skew quadrupole term of the field in the center of the WMC model for different values
of the current density in the coils

It can be observed that as one would expect the value of the field increases with the
current intensity , but the skew quadrupole seems to be attenuated as the current raises
which would undermine the hypothesis according to which steel saturation would favor
field perturbation. To see better the influence of perturbation on the skew quadrupole
content, the average skew quadrupole has been normalized by dividing it by the average
normal dipole term of the field (calculated between z =0 to z = 20 cm too). The plot is
presented in figure 11.31 with two different vertical scales.
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Fig. 11.31: Average skew multipole term of the field divided by the average normal dipole term in the center of
the magnet gap versus normalized current density
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One can see clearly that the relative importance of the skew multipole term with respect
to the functional steering field decreases as saturation raises.

Interpretation

This decrease of the relative importance of the skew multipole means that as the magnet
Is used with higher and higher currents, it becomes relatively less sensitive to the
geometrical defects of its poles.

This can be interpreted considering the nature of the saturation phenomenon. As the
current augments in the coils, the magnetic field induced in the steel grows. This means
that the magnetic flux density increases, that the density of field lines guided by the
steel increases. When the steel starts to saturate, its permeability decreases and it admits
less and less additional field lines. Since the flux generated by the coils raises anyway,
the field lines start to be driven by the air instead of being sucked by the steel. The
magnet starts to be less and less 'iron-dominated'.

As the air drives more and more flux compared to the steel, its influence on the field
shape gets more and more important. Since geometrical perturbations of the pole tips
only affect the field lines that are driven by the steel, one can understand the decrease of
their relative influence with the decrease of the relative influence of the steel on the
field shape.

Conclusion

The initial assumption regarding the help that steel saturation would provide in studying
the influence of geometrical perturbations was wrong, as its effect is actually to lower
their influence. However, since this effect is limited to ~20% of the studied value (Fig.
11.31) and since this saturation influence verification was being undertaken in parallel to
the rest of the perturbation studies, it was decided that the studies should keep using the
ABH magnet. One can later translate the results to weaker magnets using the established
curves.
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IV.3 - Quantitative influence of geometrical perturbations

The purpose of this section will be to look for an exploitable correlation between the
amplitude of the geometrical perturbations and their expected effect on the field
components.

IV.3.1 - Models used
Presentation

As section 11.4.1 explained the convex shapes that have been used to model the
perturbations until now are not realistic. As a consequence, the models that are going to
be used from now on will have perturbations whose shape can logically be expected
from machining defects. It was established that, to some extent, any milled surface is
tilted and presents a concave elliptic shape. This is therefore the way in which
perturbations will be modeled. However, and although each pole tip should present both
a tilt and an concave elliptic shape, those defects will be separated in order to be able to
quantify their amount more clearly. This separation will be done artificially by using
models that present a concave elliptic upper pole, and a planar tilted lower pole.

The first model created that way was intended to be an equivalent of the WMC model in
the way that it was modeled to fulfill the tolerances with a play as low as possible.
Nevertheless, since the objective was not to match the tolerances anymore but to make a
model that could be easily modified to study different values for the perturbation, this
model was dimensioned with metric units, having a perturbation amplitude of 50
microns, versus 0.002 in for the WMC model. The 0.002 in value came from the
drawings edited by the engineers, who use the U.S. customary unit system on a general
basis, and the 50 microns value was intended to be a starting point for a set of
simulations with different perturbation amplitudes that would be realized in a metric
system scientific environment (numerical codes, internal communication...).

Figures 11.32 and 11.33 respectively present the new elliptic and tilted model and the
WMC model, for comparison.
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Equations of the slope and ellipse:
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Comparison of their field

Figure 11.34 presents a plot of the skew quadrupole of the field induced by both the
WMC and the P =50 microns elliptic model. Several interesting points are to be
noticed:

- the amounts of skew quadrupole induced by both models are very similar,
which is quite reinsuring about the assumption that there could be a correlation between
the amplitude of the geometric perturbation and the amplitude of defect in the field

- the quadrupole field induced by the P =50 model has a slightly lower in
absolute value, which is consistent with its having a slightly lower perturbation (50
microns versus 50.8 for the WMC model)

- the quadrupole fields induced by the two models have opposite signs. This is
probably the effect of having a concave form instead of convex. Firstly, the purpose of
this section is again to study quantitatively the influence of the perturbation amplitude,
so a greater importance will be given to the amplitude of the field than to its sign. Of
course and although it is very unlikely, if the latter were to change with the perturbation
amplitude, this would be considered with great care. Secondly, we have seen that a
concave shape is far more realistic than a convex one so the sign of the field induced by
the elliptic model is more likely to have physical meaning.
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Fig. 11.34: The skew quadrupole induced by the two compared models along the length of the dipole.

IV.3.2 - Multipoles behavior

After having calibrated the parameterized model, it was decided that it would be solved
for different values of its parameter. Since the future magnets are a priori not expected
to be designed with looser tolerances than the current magnets, the range for the
variation of the parameter P was going to be 0 - 50 microns (Fig. 11.35).
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Fig. 11.35: Skew quadrupole field induced by the perturbed
models for P =0, 5, 10, 17, 25 and 50 microns

One can observe that the value of the quadrupole field increases with the value of the
geometrical perturbation which confirms a dependence. The next step is to determine
the character of this dependence. To be able to plot the intensity of the field induced by
the modeled magnets in function of their perturbation parameter, one needs a value that
would represent the extent of the multipole content of the field for a given magnet. The
integrated field along the beam path is widely used for that purpose. This integral:

Ié.dr 0

beampath

can be calculated for each multipole harmonic of the field independently, by linear
property of the integral. In this case it is calculated numerically (with a finite step) using
the table of evaluated fields generated by the script which evaluates the multipoles
(11.3.5.2) [A3]. Each integral is however normalized by dividing the multipole value by
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the normal dipole term (the principal field that bends the beam) so that one can see
clearly the relative importance of a given term with respect to the ambient field. At first,
the integrals will be computed over the portion of the beam path that corresponds to the
gap between the poles (90 cm of the beam path, centered on the origin), for it was said
that the study of the edges' contribution would come later.
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Since this is a quantitative approach, higher order multipoles have been considered, to
discover whether their content can be a significant perturbation for the particle beam.
The linear tendency seems established for the quadrupole term. It is not as clear for the
sextupole and rather bold for the octupole term. It should however be noted that the
values for the those fields are extremely low, and 1 ppm of a 14kG field that has been
integrated over a ~100cm magnet only represents an ambient value of ~14mG/cm.

It has been established [7] that the finite element numerical code that is used to realize
those calculations present a noise in its field values, mainly due to meshing issues, that
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is around 50 mG in amplitude, that's to say around 4 ppm. That renders the graphs for
sextupole and octupole terms not conclusive.

Since the variation of quadrupole and sextupole seem monotonic, a way of trying to
determine a variation tendency for those terms anyway is to expand the range of
variation of the geometrical parameter P so that a fit can be computed with higher
values of the field, and then extrapolated to lower values of the geometrical perturbation

(Fig. 11.35).
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Given the accuracy of the fits, all three multipoles will be considered to have a linear
dependence on the perturbation amplitude. Between figures 11.36 and 11.37, skew
quadrupole and sextupole calculations are even consistent at the few percent level.

Now that the behavior of the field within the body is better understood, it shall be
compared to the field that is seen near the edges of the poles, to ponder its relative
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importance in the total integrated field seen by the beam as it travels through the whole
magnet.

IV.3.3 - Relative importance of body and edge fields

Obtaining an accurate calculation of the field value near the edges of the poles is a
difficult task on which Jefferson Lab scientists are still working. However, once refined
the finite element mesh in that region, the values obtained were accurate enough to
allow this study to go on and reach meaningful conclusions.
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The quadrupole body term is obviously dominating the edges’ field and imposes the
tendency (fig. 11.38). The integrated octupole over the whole model is very far from the
body term. Its oscillations as the geometrical perturbation increases are very unlikely to
have any physical meaning and this whole set of value is probably composed mainly of
numerical noise.
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The relation between the sextupole field integrated in the body and its integration over
the whole model seems a bit stronger for high values of the perturbation, although the
oscillation observable at low values clearly indicate that our uncertainty is too high to
establish a relation.

Conclusions

The integrated field over the body has a linear behavior with respect to the amplitude of
the geometrical perturbation of the pole tips for quadrupole, sextupole and octupole.
However, after comparison with the integrated fields over the total length of the
considered beam trajectory, it appears that a clear dominance of the body term is only
established for the quadrupole term, since the influence of numerical noise becomes too
strong when it comes to the study of higher terms, which are much lower fields.
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V -

General conclusions

This section presents the final conclusions that the student's work, along with his
supervisor's productive coaching led to.

10.

11.

The perturbation modeling technique is valid in the body of the magnet.

Skew quadrupole and sextupole calculated tendencies are consistent at the few
percent level over a variation of a factor of 20 in their evaluation domain.

Skew terms at the end of the steel, where perturbations terminate, are more difficult
to model. Ten variations of end mesh have been tried. One was found which did
not increase the number of elements unduly and provided more physical results than
those shown above. Unfortunately, time did not permit the work presented to be
redone with the better mesh outside the steel. The results shown here which include
the ends of the magnets are unfortunately not meaningful except to inform further
development of magnet models.

However, since the geometrical perturbation only affects the steel, the integrated
skew term outside of it should be close to zero, as it is in the non-perturbed models.
Use only of the terms calculated in the body of the dipole is therefore reasonable.

Skew terms are ~20% larger in magnets in which the steel remains in the linear
regime than in magnets approaching saturation.

Skew quadrupole predicted for 50 micron perturbation and 6 kG field (current
specifications for the magnets) is two orders of magnitude higher than the ~1 G per
meter of dipole seen in present CEBAF with beam. There cannot be a systematic
machining or assembly error. Errors must be random and cancel in large part OR
the vendor must have performed far better than specification, or both.

Skew sextupole at the level predicted would likely be seen in beam shape in the
halls and isn't. Whether it is suppressed by one or two orders of magnitude for the
same reasons as the skew quadrupole can't be determined by data available.

Skew terms in individual magnets immediately prior to a critical region, for instance
the Compton polarimeter chicane dipoles, should be held to tight tolerance because
there's no way to "average out" the random errors over short distances.

The 12 GeV project team must examine this work to determine whether they wish to
tighten the tolerance on machining of new dipoles or to gamble that the vendor
chosen will do as well as did the one who did the work in the early 1990's. Given
the large cost to tighten tolerance on the sixty or so dipoles to be purchased, perhaps
a modest incentive clause in the dipole contracts and dedicated skew correction
elements in the hall transport lines are a good strategy.

Extreme care must be taken in disassembly and reassembly of the existing dipoles
with H steel to ensure no systematic error is created.

Direct measurement of normal and skew terms through at least sextupole and
perhaps decapole is desirable so magnets can be sorted to cancel skew terms locally.
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Annex [Al]

Opera-3d Post-Processor Version 12.009 started on 25/May/2008 at 19:50:15
copyright (c) 1984-2007, vector Fields Limited, oxford, UK.

Node: CASNRUIZ. Processor: EM64T/x64. System: Windows XP Professional x64 Edition
(Service Pack 2)

command language 1n1t1a11sat1on

Unit of Length T QM
Unit of Magn Flux Den ! GAUSS
Unit of Magnetic Field : OERSTED

Unit of Magn Scalar Pot : OCM
Unit of Magn Vector Pot : GCM

Unit of Conductivity : SCM
Unit of Current density : ACM2
unit of Power T WATT
Unit of Force : NEWTON
unit of Energy : JOULE
Unit of Electric Field T VCM
Unit of Elec Flux Den : CCM2
Unit of Mass : GRAMME

Information: opera. com1 was not found in the local or home directory

%% CONTROL COMMAND ** $COMI

” * COMMAND INPUT *%*

*%%% COMMAND INPUT *** ACTIVATE FILE='C:\Documents and Settings\nruiz\My
Documents\TOSCA\Spoiling\abh_jbl4kG\extending models\2x10
micron_elliptic_vs_tilt\2x100-micron_elliptic_vs_tilt_ extended minus8cm.op3'
opening file for checking: C:\Documents and Sett1n?s\nru1z\My
Documents\TOSCA\Spoiling\abh_jbl4kG\extending models\2x100-
micron_elTliptic_vs_tilt\2x100-micron_elliptic_vs_tilt_extended_minus8cm.op3
#*%%% COMMAND INPUT *** LOAD

Attaching file as resident: C:\Documents and Settings\nruiz\My
Documents\TOSCA\Spoiling\abh_jbl4kG\extending models\2x100-
micron_elTiptic_vs_tilt\2x100-micron_elliptic_vs_tilt_extended_minus8cm.op3
Opening database . 11pt1c vs_tilt_extended_minus8cm.op3, simulation number 1 on
25/May/2008 at 19: 50:2

TITLE=z=8cm cutting p1ane was removed

unit of Length e
Unit of Magn Flux Den : GAUSS
unit of Magnetic Field : OERSTED

Unit of Magn Scalar Pot : OCM
Unit of Magn Vector Pot : GCM

Unit of Conductivity T SCM
Unit of Current density : ACM2
Unit of Power T WATT
Unit of Force : NEWTON
Unit of Energy : JOULE
Unit of Electric Field T VCM
Unit of Elec Flux Den : CcCM2

Unit of Mass GRAMME

” * COMMAND INPUT *%* SELECT ACTION=DEFAULT

* COMMAND INPUT * SELECT ACTION=SELECT OPTION=SURFACES

* COMMAND INPUT * THREED OPTION=REFRESH

*%% CONTROL COMMAND $comMI 'c:\Documents and Settings\nruiz\My
Documents\TOSCA\Comis\Dip_Eval_300_Nodal.comi' MODE=CONTINUOUS

opening file for input: C:\Documents and Settings\nruiz\My
Documents\TOSCA\Comis\Dip_Eval_300_Nodal.comi

%%k FILE INPUT *#*%%¥*% ACTIVATE CASE=1 MODELSYMMETRY=DATABASE

The resident file has been unloaded to allow the new file to be checked.
opening file for checking: C:\Documents and Settings\nruiz\My
Documents\TOSCA\Spo111ng\abh jbl4kG\extending models\2x100-
micron_elTiptic_vs_til1t\2x100-micron_elliptic_vs_tilt_extended_minus8cm.op3
*%%% FILE INPUT * ** LOAD

Attaching file as resident: C:\Documents and Settings\nruiz\My
Documents\TOSCA\Spoiling\abh_jbl4kG\extending model1s\2x100-
micron_elTiptic_vs_tilt\2x100-micron_elliptic_vs_tilt_extended_minus8cm.op3
Opening database ...Tliptic_vs_tilt_extended_minus8cm.op3, simulation number 1 on
25/May/2008 at 19:50:53

TITLE=z=8cm cutting p1ane was removed

Unit of Length DM
Unit of Magn Flux Den : GAUSS
Unit of Magnetic Field : OERSTED

Unit of Magn Scalar Pot : OCM
Unit of Magn Vector Pot : GCM

Unit of Conductivity : SCM
Unit of Current density : ACM2
Unit of Power T WATT
Unit of Force : NEWTON
Unit of Energy : JOULE
Unit of Electric Field T VCM
Unit of Elec Flux Den : ccM2
it of Mass GRAMME
* FILE INPUT ##%%¥%%% SELECT ACTION=DEFAULT
FILE INPUT * SELECT ACTION=SELECT OPTION=SURFACES
FILE INPUT *

FILE INPUT *#*#*¥*#*%* THREED OPTION=GETVIEW
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Yo e

FILE INPUT
PERSPECTIVE NO

degevede st

*%%% FILE INPUT *°

* FILE INPUT
* FILE INPUT
* FILE INPUT

*

PLOT FILE=TEMP

[elelolololololololololololololololololololololololololololololololololololololololololololololeolololololelelolo oo lele o]\
[eleolololololololololololololololololololololololololololololololololololololololololololololololololololololololelolo ol o]

* SET FIELD=NODAL COIL=NODAL
set XLOCAL=0,YLOCAL=0,ZLOCAL=0,PLOCAL=0,TLOCAL=0,SLOCAL=0
CIRCLE RADIUS=1 TH1=0 TH2=360 zC=0 NP=60

COMPONENT=BY

Cosine term

X Y
1.0 0.0
0.99452189536827 0.10452846326765
0.97814760073381 0.20791169081776
0.95105651629515 0.30901699437495
0.9135454576426  0.4067366430758
0.86602540378444 0.5
0.80901699437495 0.58778525229247
0.74314482547739 0.66913060635886
0.66913060635886 0.74314482547739
0.58778525229247 0.80901699437495
0.5 0.86602540378444
0.4067366430758 0.9135454576426
0.30901699437495 0.95105651629515
0.20791169081776 0.97814760073381
8.%0452846326765 2.89452189536827
-0.1045284632677 0.99452189536827
-0.2079116908178 0.97814760073381
-0.3090169943749 0.95105651629515
-0.4067366430758 0.9135454576426
-0.5 0.86602540378444
-0.5877852522925 0.80901699437495
-0.6691306063589 0.74314482547739
-0.7431448254774 0.66913060635886
-0.8090169943749 0.58778525229247
-0.8660254037844 0.5
-0.9135454576426 0.4067366430758
-0.9510565162952 0.30901699437495
-0.9781476007338 0.20791169081776
—2.8945218953683 8.%0452846326765
-0.9945218953683 -0.1045284632677
-0.9781476007338 -0.2079116908178
-0.9510565162952 -0.3090169943749
-0.9135454576426 -0.4067366430758
-0.8660254037844 -0.5
-0.8090169943749 -0.5877852522925
-0.7431448254774 -0.6691306063589
-0.6691306063589 -0.7431448254774
-0.5877852522925 -0.8090169943749
-0.5 -0.8660254037844
-0.4067366430758 -0.9135454576426
-0.3090169943749 -0.9510565162952
-0.2079116908178 -0.9781476007338
6061045284632677 —8.8945218953683
0.10452846326765 -0.9945218953683
0.20791169081776 -0.9781476007338
0.30901699437495 -0.9510565162952
0.4067366430758 -0.9135454576426
0.5 -0.8660254037844
0.58778525229247 -0.8090169943749
0.66913060635886 -0.7431448254774
0.74314482547739 -0.6691306063589
0.80901699437495 -0.5877852522925
0.86602540378444 -0.5
0.9135454576426 -0.4067366430758
0.95105651629515 -0.3090169943749
0.97814760073381 -0.2079116908178
2.89452189536827 6061045284632677
component: BY, from buffer: Circle
Minimum: -14169.5367896953, Maximum:
Integral = -88936 9800883494
dedede FILE INPUT Fededededek
Polynomial fitting to tabulated values on a line
Component: BY
Fourier coefficients

order Sine term

n A_n B_n

* THREED OPTION=SETVIEW ROTX=-90 ROTY=0.01 ROTZ=0.01 SIZE=100

BY
-14163
-14162

.221838764
.806446465
-14162.510717193
-14162.341017265
-14162.25213583

-14162.210476839
-14162.165329251
-14162.067371641
-14161.914594433
-14161.662715689
-14161.333207984
-14160.916837241
-14160.441508285
-14159.914040818
-14159.369443517
-14158.822561159
-14158.294760717
-14157.783552069
-14157.266117814
-14156.74850479

-14156.214193167
-14155.658491549
-14155.07654529

-14154.482306533
-14153.903318198
-14153.369907659
-14152.926629838
-14152.618433451
-14152.493506994
-14152.589940569
-14152.932915504
-14153.51801096

-14154.343419998
-14155.378395705
-14156.582637608
-14157.865888133
-14159.213505653
-14160.557094496
-14161.848552429
-14163.059517056
-14164.168265547
-14165.170902605
-14166.062913137
-14166.853519502
-14167.551863513
-14168.162896764
-14168.683218789
-14169.099039803
-14169.392133901
-14169.536789695
-14169.512690175
-14169.312312022
-14168.937056385
-14168.400606992
-14167.720236367
-14166.925138756
-14166.098348065
-14165.265408849
-14164.482016017
-14163.783981529
-14163.221838764

-14152.4935069936

FIT TYPE=FOURIER FILE=TEMP COMP=By ORDER=10 PRINT=YES

ONOUVIAWNRERO

0.0
4.65362551353294
0.06511040232441
-0.018629312841
-6.226690931E-05
-3.156967654E-03
1.463015892E-03
8.1625057096E-04
4.9866337026E-04

-14161.229928783
-5.1715594743102
2.71085332286577
0.02822737628213
0.44176275077825
-3.641395952E-03
-1.04168556E-03

4.8987181458E-06
2.3009152433E-03

49

AmpTitude Phase
14161.2299287827 179.999994991044
6.95710125099044 -138.01754624113
2.7116351344868 -1.3758892829255
0.03382064559852 33.4237420306027
0.44176275516654 8.0758981544E-03
4.8193577627E-03 139.075809756733
1.7959744724E-03 -125.45133672036
8.1626527062E-04 -89.656141690398
2.3543313517E-03 -12.228255562204



9
** FILE INPU
“ FILE INPU
* FILE INPU

1.3782763069E-04
T R

T circ

-7.529855982E-04

Cosine term
B_h

-5.4555288062005
-0.1707010108206
0.03383178578031
-1.856113384E-03
1.3234512454€E-03
-4.974628375E-03
0.01101269519737
9.2542828953E-03
9.037727344E-03
1.6497468997E-03

Cosine term
B_n

-5.3960906761972
-0.1757395096984
0.04217618394546
-6.554857298E-03
7.1221023268E-03
-2.715035426E-03
6.9654883587E-03
0.01022753106116
4.0134610763E-03

LXX X T ek f-lt
Polynomial fitting to tabulated values on a line
Component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 -0.0168299773886
2 5.0776727173€E-03
3 0.01432123088062
4 -6.691231953E-03
5 -2.823309362E-03
6 8.1448365678E-03
7 6.191892909E-03
8 -1.445175793E-03
9 -5.90514075E-03
Fededed FILE INPUT o o 3
* FILE INPUT circ
%%k FILE INPUT ** % fit
Polynomial fitting to tabulated values on a line
Ccomponent: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 -6.303748054E-03
2 -1.724816197€E-03
3 0.01593779981791
4 2.8109563302E-03
5 3.0424887929E-03
6 -4.610919032E-03
7 1.6607229841E-03
8 5.1316060632E-03
9 5.1507520595E-03

etk

circ

etk FI'__E INPUT.:‘::‘::‘::‘::’::’: f-lt .
Polynomial fitting to tabulated values on a line

Component: BY
Fourier coeffi
order

n

OoONOUVITDAhWNERO

* FILE INPUT **
* FILE INPUT

cients

Sine term

A_n
0.0
3.5975865751E-03
-3.540815259E-03
8.0464508355E-03
-0.0181358052348
-4.799463861E-03
-1.581774896E-03
-6.340173195€E-04
-2.00519836E-03
3.3446749663E-03

-2.623088254E-03

Cosine term
B_n

-5.3226354037128
-0.1793324295713
0.03329422539948
6.8704450932E-03
-6.80834172E-03
-1.001028752E-03
-5.037607792E-03
0.01622444987614
5.8541896055E-03
-7.721660831E-04

Cosine term
B_n

-5.2365498124121
-0.1630760471865
0.01972255920183
6.0596624357E-03
-0.0179566940429
3.3041885457E-03
-2.053754204E-03
0.01109710489124
3.0604180317E-04

ek C-l rc
EX XX FILE INPUT EX XXX x f-lt
Polynomial fitting to tabulated values on a line
component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 9.6710022669E-03
2 0.01765975976018
3 -9.447436244€E-03
4 -5.783492371E-03
5 -6.828364476E-03
6 8.9752446137E-03
7 -3.182523228E-03
8 -8.947663227E-03
9 2.91 555872E 03

FILE INPUT *
FILE INPUT
FILE INPUT

circ

set xloc=1

0.01248614979323

1.327,0.000,73.982,2.663,0.000,0.000

Po1ynom1a1 fitting to tabulated values on a line

component: BY
Fourier coeffi
order
n
0
1
2
3
4

fit
cients
Sine term
A_n
0.0

0.01784765672023
0.01308234533318
-1.263289006E-03
4.8439101676E-03

Cosine term

B_n
-5.1399744669276
-0.1611717519349
0.0217545679869
5.9076636117E-03
-6.797978796E-03

50

7.654957654E-04

* set xloc=1.374,0.000,74.981,2.699,0.000,0.000

AmpTitude

.45552880620054
.17152866592515
.03421070723193
.01444101141992
.8208583218E-03
.719965316E-03
.01369736537539
.01113468857686
.1525432868E-03
.1312602381E-03

@OOOW@OOOM

* set xloc=1.362,0.000,74.731, 2. 690,0.000,0.000

AmpT1itude

.39609067619721
.17585253057193
.04221143782336
.01723309656526
.6567497702E-03
.0777635316E-03
.3533587491E-03
.0103614860149
.5146949736E-03
.7802109622E-03

U10\OOO-I>\IOOOU1

FILE INPUT *¥***** get xloc=1.350,0.000,74.481, 2. 681,0.000,0.000
* FILE INPUT el

AmpTitude

.32263540371283
.1793685115206
.03348197750509
.01058056647002
.01937165322033
.9027453449€e-03
.2801045529€e-03
.01623683318092
.1880818029€E-03
.4326507382E-03

mem-hOOOOLn

set xloc=1.338,0.000,74.232, 2. 672,0.000,0.000

AmpTitude

.2365498124121
.16336255828933
.02647350479738
.01122379438613
.01886509064256
.585790886E-03
.207221199E-03
.01154444416432
.9528955543E-03
.0128211871377

OOOO@\IOOOOM

AmpTitude

5.13997446692761
0.16215693778607
0.02538521198874
6.0412240864E-03
8.3472139919€e-03

-169.62731411444

Phase

179.999994991044
174.369212576266
-8.5355765642261
-97.38469293707

78.8119324375829
150.423275375887
-36.486114453426
-33.785847576462
9.08495700215354
74.3909795088685

Phase

179.999994991044
177.945685371731
2.34183463045649
-112.35625622872
-21.538192197483
-131.74486353951
33.5032184210446
-9.2230589314923
-51.970814350807
-116.98806465358

Phase

179.999994991044
-178.85073895747
6.07054425273992
-49.507711780297
110.576576514822
101.781333762995
162.56805835838

2.23785962239485
18.907544000601

-102.99978609285

Phase

179.999994991044
-176.60612206643
-41.841554870655
57.3235558030462
162.147282956251
64.1780461042141
-102.88876787707
16.0022876545783
88.041042446106

-13.127148647153

Phase

179.999994991044
-173.68098474899
-31.021052524404
12.0702845141411
-144.5281656903



woo~NoOwv

* FILE INPU
* FILE INPU
k% FILE_INPU

7.6228602747E-04
7.0224167183E-03
-4.831385993E-04
-6.320537285E-04
-3.348580958E-03
T %%
T

T B

-4.313425215e-03
5.7685872572E-03
0.01411432841265
6.1656790677E-03
8.9390734754€E-03

Polynomial fitting to tabulated values on a line

Component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 0.02123581632123
2 4.,1953513972E-03
3 -0.0160653871389
4 3.422772327E-03
5 6.0712280479E-03
6 9.887445942E-03
7 -3.013360418E-03
8 9.0359476595E-03
9 -5.831596302E-03

ki FILE INPU
* FILE INPU
* FILE_INPU

T FHwkdk
T

cosine term
B_n

-5.0447333605769
-0.1526867354578
1.8289375564E-04
-0.0130001118032
6.7299790728E-03
-2.878639534E-03
-3.192005559E-03
0.01294211458046
2.4155459052E-03
9.9000123276E-03

Polynomial f1tt1ng to tabu]ated values on a Tine

Component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 0.01050345038872
2 -0.0140916820987
3 -3.685393007E-03
4 6.4949583244E-04
5 3.9731102382E-03
6 2.775600168E-04
7 -9.681876291E-03
8 3.78303312E-03
9 -1.42780682E-03

cosine term
B_n

-4.9478856805132
-0.1604141346341
0.01032898438486
-8.486052151E-03
9.1377633271E-03
-0.0125276007275
4.5848136044E-03
-2.748728041E-03
0.01401998437927
0.01130736659921

cosine term
B_n

-4.8401295503025
-0.164845536941
-7.39200321E-04
-0.0126126271511
6.2448534677E-03
-0.0290687968947
8.1819275815E-03
-6.563520868E-03
0.01043341965579

ek FILE INPUT el
* FILE INPUT circ
*%*% FILE INPUT ** “* it
Polynomial fitting to tabulated values on a line
component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 8.9290400378E-03
2 -0.0150331387836
3 -9.466765608E-03
4 -4.12096114E-03
5 -0.0126769018456
6 7.9278630479€e-03
7 -8.062370716E-03
g 0.01070028932416

w*%% FILE INPU
* FILE INPU

* FILE INPU

-6.382300157E-03

T ek

5.6676717275E-05

Polynomial fitting to tabulated values on a Tline

Component: BY
Fourier coeffi
Order

n

OWoONOUVIRWNEREO

FILE INPU

FILE INPUT
* FILE INPUT *"

T ¥ circ
T ** <% fit
cients

Sine term

A_n

0.0
0.0103644251464
-6.198996998E-03
-0.0200267375188
-4.546729998E-03
7.3149632177E-04
-0.0104595995942
-8.089557457E-03
8.1664482581E-03
-5.518281661E-04
T

circ

Cosine term
B_h

-4.7256698636916
-0.1719950980788
-4.612937322E-03
5.1584525719e-03
-2.961238211E-03
-0.0224369588587
1.4424625171E-03
3.1051841128E-03
-1.804387129€e-03
-4.189042044E-03

Polynomial fitting to tabulated values on a Tline

component: BY
Fourier coeffi
order
n
0

fit
cients
Sine term
A_n
0.0

Cosine term

4.3802644979E-03
9.0879555187E-03
0.0141225949969

6.1979908262E-03
9.5456811717€E-03

set xloc=1.315,0.000,73.732,2.654,0.000,0.000

Amp1itude

.04473336057689
.15415641108815
.1993360752E-03
.02066638746413
.5503634828E-03
.7191052661E-03
.0103899223647
.01328829074108
.3532460742E-03
.0114898981509

O@OOO\\IOAOU‘I

set xloc=1.304,0.000,73.482, 2.645,0.000,0.000

Amp1itude

.94788568051322
.16075763453248
.01747178934151
.2517675457E-03
.1608167462E-03
.01314254103862
.593207523E-03
.01006450368206
.01452140838838
.01139715629987

OOO-&O&D@OOA

set xloc=1.292,0.000,73.232, 2.636,0.000,0.000

Amp1itude

.84012955030248
.16508718546682
.01505130156502
.01577016216573
.482012801E-03
.03171275442634
.0113927587289
.01039623142075
.01494498033905
.3825518048E-03

OHOOOO\IOOO-b

“* set xloc=1.281,0.000,72.983, 2.627,0.000,0.000

Amplitude

.72566986369159
.1723070952449
.7270145928E-03
.0206804218667
.4260192971E-03
.02244887992071
.01055859468798
.6650509646E-03
.3634137805E-03
.2252322506E-03

J>OOOOOOU‘IO\IOJ>

set xloc=1.269,0.000,72.733, 2. 618,0.000,0.000

AmpTitude

-169.97793168579
-50.598492566929
1.9604898598809

5.85303748566267
20.5359719157808

Phase

179.999994991044
-172.08203671952
-87.503803921773
128.979781825153
-26.957245081729
-115.36770967612
-107.89185025874
13.1068701351751
-75.033304737512
30.5001855306647

Phase

179.999994991044
-176.25378184841
53.7591605019161
156.525254286864
-4.0656436625791
-162.40364732435
-3.4644007444617
105.849478872961
-15.100574838281
7.19677896128044

Phase

179.999994991044
-176.89953593107
92.8150432003212
143.108894442669
33.4207061061371
156.437980548225
-44.096472516201
129.148796086931
-45.72347291939

89.4912073776728

Phase

179.999994991044
-176.55152131145
126.654500287176
75.5558267270421
123.075778533519
-178.13268262058
82.1479792522418
69.0006527627503
-102.45939294564
172.495554273329

Phase

B_n
-4.6233375157648 4.62333751576476 179.999994991044

51



OONOUVIAWN R

Ttk

FILE INPU
* FILE INPU
#xkk FILE INPU

0.0219927667348

-2.581049507E-03
-0.0178124855031
-0.0213738261309
0.01377321290566
-1.459649679€-03
-7.281407948E-03
1.6930444232E-03
0.01945241172045

-0.1837783390834
-0.0147597499746
9.8648630972E-03
-9.758817403E-03
-1.247675632E-03
-0.012983218081

-3.991718258E-03
-3.298373776€E-03
-5.741288033E-03

Polynomial fitting to tabulated values on a Tline

component: BY
Fourier coeffi
order
n
0
1
2
3
4
5
6
7
8
9
* FILE INPU
* FILE INPU

#xkk FILE INPU

T %
T circ
T kwwwwk fig
cients
Sine term
A_n
0.0

0.02243467518584
5.2984666972E-03
-0.0183075303818
-0.0199270464637
0.01173882328007
1.285607817E-03

-6.213143399€e-03
-3.976529788E-03
1.9868299109e-03

e e e o

T
T C?rc
T Ak f1t

Cosine term

B_n
-4.5005921992228
-0.180034604897
-0.0147610095509
-3.298442573E-03
-0.0277422731559
3.6262131214E-04
-0.0226197465026
-2.855661608E-03
-0.0131604385863
1.7160682256E-03

Polynomial fitting to tabulated values on a line

component: BY
Fourier coeffi
order
n

OOONOUVIARWNRO

* FILE INPU
FILE INPU

cients

Sine term

A_n
0.0
0.02332330005347
9.2438590244E-03
-1.873216912E-03
-0.0192091270998
0.01498818203654
-0.0127514724869
0.01162286111938
-9.478348447e-03
-6.84564669E-03
T k! o %

T circ

Cosine term

B_n
-4.3644466324416
-0.1729240278609
-0.0126348791979
-1.866459026E-03
-0.0382454949587
1.0703062619€E-03
-0.0419697613491
-0.0113507226872
5.759649181E-04
1.9479293266E-03

Cosine term

B_n
-4.2497924492698
-0.1864177300278
0.02814582883659
2.7828163464E-03
-0.0100635464954
4.3430835541E-03
-4.119739513E-03
-0.0153852218786
-6.945726336€E-03
1.9653220975E-04

Cosine term
B_n

-4.1051794781058
-0.1801752178958
9.720159284E-03
0.02232540957081
0.01096367091403
0.02355019550527
0.019958819678
-1.02433911E-03
3.8685756914E-03
4.3274088292E-04

*%%% FILE INPUT ThfhAhk fit
Polynomial fitting to tabulated values on a line
Component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 0.01278048625356
2 -0.024654278111
3 0.01341738686851
4 -0.0181170493595
5 7.8901662887E-03
6 -0.0269781552644
7 9.3766193909E-03
8 0.01264267600445
9 6.5057957104E-03
* FILE INPUT ** i
FILE INPUT circ
*%%k% FILE INPUT ** ** fit
Polynomial fitting to tabulated values on a line
Component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 -6.115662756E-03
2 -0.0389153307612
3 1.4082093542E-03
4 -0.0179579684649
5 -1.366461955E-03
6 4.0295633064E-03
7 2.3216657447€E-03
8 4.4739221979E-04
9 8. 6234316793E 03
* FILE INPUT d
* FILE INPUT circ
LT T FILE INPUT ** X3 fit

Polynomial fitting to tabulated values on a line

component: BY

52

O\C)C)C)K)C)C)Cﬂb-b \HOCDCDCDCDBJC)CLB hJC)O\CDCDCDC)CND-h C)UJOJC)CDCDC)CND

mLthCNDCDOCDCDb

.18508959912679
.0149837257005
.0203617328271
.02349627546201
.01382960911331
.01306501163123
.3037772346€E-03
.7075152035E-03
.02028197993353

* set xloc=1.258,0.000,72.483, 2. 609,0.000,0.000

AmpTitude

.50059219922278
.18142704762828
.01568314867314
.01860229534456
.03415729644783
.01174442277069
.02265625121906
.837978803E-03
.01374808833749
.6253348834E-03

set xloc=1.246,0.000,72.233, 2. 600,0.000,0.000

AmpT1itude

.36444663244158
.17448981556816
.01565532184305
.6443545329E-03
.04279846315665
.0150263487333
.04386411880207
.01624591659843
.4958319736€E-03
.1173946964E-03

* set xloc=1.235,0.000,71.984, 2. 591,0.000,0.000

AmpTitude

.2497924492698
.18685532076336
.0374168559619
.0137029317008
.020724440778
.0065031406E-03
.02729089802712
.01801738170364
.01442499119205
.5087635335E-03

* set xloc=1.224,0.000,71.734, 2. 582,0.000,0.000

AmpTitude

.10517947810584
.18027897956985
.04011090206868
.02236977796245
.02104021652215
.02358980556536
.02036152900397
.5375977698E-03
.8943597263E-03

.6342827495€E-03

* set xloc=1.213,0.000,71.484, 2. 573,0.000,0.000

-173.17585773406
170.080931732679
61.0215545940324
114.540389721903
-95.176129122927
173.585402329276
118.731854980857
-152.82871514724
-106.44371492917

Phase

179.999994991044
-172.89680501802
-160.25438731864
100.213328939248
144.31061987589

-88.230649340856
-176.74705229987
114.68427663074

163.187391614213
-49.182112372073

Phase

179.999994991044
-172.31852542825
-143.81025778957
134.896458416811
153.331513495255
-85.915438799075
163.099890437751
-134.32131876523
86.5226164461483
74.1162906848878

Phase

179.999994991044
-176.07802980255
41.2166678101678
-78.282764051757
119.051021776109
-61.169739139982
98.6823607061154
-148.63951671479
-118.78383379546
-88.269687646523

Phase

179.999994991044
178.055958601917
75.975773890947

-3.6092372620495
58.5951633764696
3.32077137014595
-11.414231214432
-113.80748576549
-6.5968245676143
-87.12719171419



Fourier coefficients
order Sine term Cosine term AmpTitude
n A_n B_n
0 0.0 -3.9423143112273 3.94231431122734
1 1.1001155694E-03 -0.1737131538566 0.17371663730653
2 -0.0175869721928 7.969056105E-04 0.01760501773531
3 -0.0126037664606 9.781224356E-03  0.01595391108457
4 -3.151805431E-03 0.01115816064694 0.01159475857857
5 -2.22073355E-03  8.0672348484E-03 8.3673135233E-03
6 0.0142643794998  -1.193819784E-03 0.01431424913126
7 -8.805528549E-03 -8.040709259E-04 8.8421639361E-03
8 -0.0133916704794 -3.872211833E-03 0.01394026049633
9 -2.433923257E-03 -7.020755753E-03 7.4306792259E-03
wwdk FILE INPUT ***%%* get xloc=1.201,0.000,71.234,2.564,0.000,0.000
* FILE INPUT circ
*¥%% FILE INPUT ** * fit
Po1ynom1a1 fitting to tabu1ated values on a Tine
Component: BY
Fourier coefficients
order Sine term Cosine term AmpTitude
n A_n B_n
0 0.0 -3.7814111632706 3.78141116327056
1 8.1509087264E-03 -0.1900788496673 0.19025353190917
2 0.01695483801069 -0.0100733520207 0.01972153525722
3 -0.0262924768067 2.7118900243eE-03 0.02643196330461
4 0.01072770693989 1.2448113038E-03 0.01079968755891
5 1.7758531526E-03 -4.275854915E-03 4.6299664873E-03
6 0.01455836544061 -0.0169165809629 0.02231852853072
7 -1.474641101e-03 -0.0122102870099 0.0122990111489
8 4.3157423451E-03 5.8183169669E-03 7.2442007369E-03
9 -2.806533209e-03 -0.0164959014511 0.01673294335556
wwdk FILE INPUT ***%%* get xloc=1.190,0.000,70.985,2.555,0.000,0.000
#*%%% FILE INPUT circ
#*%%% FILE INPUT ** % fit
Polynomial fitting to tabulated values on a line
Ccomponent: BY
Fourier coefficients
order Sine term Cosine term AmpT1itude
n A_n B_n
0 0.0 -3.6557890419703 3.65578904197028
1 9.4086848809E-03 -0.189368306612 0.18960189582459
2 0.01573703177383 -0.0125652628203 0.02013802370626
3 -0.0104008589286 -0.0145011131213 0.01784545175139
4 5.0414200392E-03 3.9538449793E-03 6.4069342226E-03
5 0.01347977084369 -5.936967453E-03 0.01472928391123
6 -0.0130196940196 -0.0137663111658 0.0189479221942
7 -8.534104531E-03 -9.51401277e-03  0.01278074251079
8 2.2154564125E-03 -0.0101159624378 0.01035572031096
9 5.8455455992E-03 -9.123273069E-04 5.9163117284E-03
* FILE INPUT ****** set xloc=1.179,0.000,70.735,2.546,0.000,0.000
* FILE INPUT *%% circ
Fk%k FILE INPUT *¥ fit
Polynomial fitting to tabulated values on a line
component: BY
Fourier coefficients
order Sine term Cosine term AmpTitude
n A_n B_n
0 0.0 -3.4951991519081 3.49519915190815
1 -0.0164025012607 -0.1779722672294 0.17872652279498
2 3.8519185985E-03 9.6521322079E-03 0.01039234973661
3 -3.37024042E-03  0.0105843241364 0.01110794481061
4 3.7299243687E-03 5.1973648317E-03 6.3972601158E-03
5 0.01105203040909 3.5256122496E-03 0.01160074643708
6 -0.0225954090602 7.4623691127E-03 0.02379578667265
7 -2.350890087E-03 -0.0126258814136 0.01284287996011
8 -0.010813291612 -6.64160277E-03  0.01269008127776
9 5.9394803992E-03 2.1628634465E-03 6.3210288483E-03
* FILE INPUT **¥*** get xloc=1.168,0.000,70.485,2.537,0.000,0.000
FILE INPUT circ
* FILE INPUT fit
Polynomial fitting to tabulated values on a line
component: BY
Fourier coefficients
order Sine term Cosine term AmpTitude
n A_n B_n
0 0.0 -3.3383440052784 3.33834400527838
-0.016652837716  -0.1693721247774 0.17018881765737
2 -0.0135099630128 0.01068602641471 0.01722527971163
3 3.7455166458E-03 -3.413603167E-03 5.0676998261E-03
4 5.4674784524E-03 0.0203582419118 0.02107964265274
5 4.4634628352E-03 5.8157895471E-03 7.3311601086E-03
6 -0.0190774103469 0.0114991173963  0.02227503729372
7 -3.551419199e-03 -5.203454444E-03 6.2998822588E-03
8 -5.45530537E-03  -3.649007139E-04 5.4674956986E-03
9 1.7540300152E-03 -1.676077308E-03 2.4260784067E-03
®%%% FILE INPUT ****¥%* set xloc=1.157,0.000,70.235,2.528,0.000,0.000

53

Phase

179.999994991044
-179.63714892377
87.4055704644047
52.1865451127314
15.7732024650905
15.3910665307226
-94.784068089167
95.2174535005397
106.127263218246
160.879822875449

Phase

179.999994991044
-177.54455758571
-120.71574927529
84.1111519321674
-83.381166025254
-157.44584829101
-139.28479511806
173.113712348495
-36.566211439185
170.344422261072

Phase

179.999994991044
-177.15561726328
-128.60567847531
144.350181633111
-51.893899047621
-113.77038537408
136.596611214775
138.107773770795
-167.64691121537
-98.870713111373

Phase

179.999994991044
174.734305716263
-21.75567482537

17.662416454959

-35.665370069252
-72.307246656238
71.7236538546793
169.452526820164
121.558546895691
-69.99088947862

Phase

179.999994991044
174.384664553673
51.6569260388887
-132.34553125859
-15.03282809465

-37.505272725832
58.9200680400118
145.685997149324
93.8267627231636
-133.69811501093



cosine term

B_n
-3.1911659157589
-0.1669597762552
0.01408915244608
0.011482396847
0.02155876927841
-0.0210381377514
-0.0242003576502
-3.573963156E-03
0.01442465187653
0.01541563923087

cosine term

B_n
-3.0174192416997
-0.1862703178231
0.02057449980678
8.4726921027E-04
-0.0178369244481
-0.0305241431861
-0.0306896450538
0.0109425339535
0.01534251911048

* FILE INPUT ** < circ
s%% FILE INPUT *¥ ¥k f1t
Po1ynom1a1 fitting to tabulated values on a line
Component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 -0.0213468235941
2 0.0224712750533
3 2.7365690604E-03
4 -0.0118088708573
5 2.501954905E-03
6 -7.96154794E-03
7 -3.027153992E-03
8 -5.384823206E-03
9 4.043831777E-03
ek FILE INPUT ki o
* FILE INPUT circ
Fededed FILE INPUT o Ve fit
Polynomial fitting to tabulated values on a line
Component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 -0.0204480544002
2 0.01553552205603
3 0.01741989191843
4 -0.0405866477116
5 8.0767787703E-03
6 -9.085737112E-03
7 2.4090745182E-04
8 -0.0148532399295
9 2.3585167472E-03

0.02604938610492

Amp1itude

.19116591575893
.16831890495349
.02652286596825
.01180399286574
.02458108955526
.021186387573
.02547633325251
.683681664E-03
.01539697706445
.01593720516079

O<D$>CN3<DC>C>C)u

* set xloc=1.146,0.000,69.985,2.519,0.000,0.000

Amp1itude

.01741924169968
.18738931194349
.02578104900605
.01744048449913
.04433319124797
.03157463653869
.03200632644337
.01094518550432
.02135442879263
.02615593847847

[elelolololeleloXa)WV)

Phase

179.999994991044
172.713911749918
-57.912903132965
-13.405081570797
28.7118358882224
-173.2179631931

161.789579805326
139.735329648015
20.4709536303389
-14.698659158985

Phase

179.999994991044
173.735364430794
-37.055951215887
-87.215438169163
113.724412267208
-165.17902621608
163.508491575768
-1.2612024332862
44.0716836761603
-5.1734656806376

Since the original output file was 90 pages long, this version only presents the data
for the first 5 cm and the last 5 cm of the 75cm-long evaluation path.

ERLELE

FILE INPU
* FILE INPU
w#%% FILE INPU

T ERIE

T e

T

Polynomial fitting to tabu1ated values on a Tine

component: BY
Fourier coeffi
order
n

OoONOUVITDAhWNERO

* FILE INPU
FILE INPU
* FILE INPU

cients
Sine term

4.5951485400029
0.08826948971471
-0.0246109877334
8.6387642104E-03
-5.428728242E-03
4.6597787634E-04
2.6026486319E-04
-6.013034293E-04
-3.800017731E-04
T

T
T W

Cosine term
B_n

-14156.041317707
-7.3097404663453
3.07454575598527
-0.6537103023218
0.4518880836371
-0.0174350781698
0.01573347049933
-0.0115532894605
3.1274977119€E-03
5.8726407403E-04

Po1ynom1a1 fitting to tabu]ated values on a Tine

component: BY
Fourier coeffi
order
n

OOONOUVIAWNRO

* FILE INPU
FILE INPU
* FILE INPU

cients
Sine term
A_n

0.0
4.59427198888759
0.0887373594782
-0.0255371689065
9.1665665751E-03
-5.591234295e-03
5.7978402152E-04
1.1790101609€E-03
-2.619115258E-05
1.1080257832E-03
T

T
T W

Cosine term
B_n

-14156.316516893
-7.3098063742938
3.07317479514165
-0.6540844556887
0.45155765610684
-0.0179099130136
0.01780932784834
-0.0123069722811
3.4676737213E-03
5.1225259193E-04

Po1ynom1a1 fitting to tabu]ated values on a Tine

Component: BY
Fourier coeffi
order

cients
Sine term

Cosine term

54

* set xloc=-0.385,0.000,5.001,0.180,0.000,0.000

AmpTitude

14156.0413177069
.63410075167168
.07581259319574
.65417341743522
.45197064991025
.01826069662176
.01574036941544
.01155622062604
.1847775043E-03
.994858399E-04

ChuUC>C>C>C>C>UJOO

set xloc=-0.385,0.000,4.751, 0. 171,0.000,0.000

AmpTitude

14156.3165168925
8.63369007652829
.07445566571728
.65458278480984
.45165068662793
.01876237951589
.01781876280557
.01236331798862
.46777263E-03
.2207062932E-03

FJUJC>C>C>C>C>kU

set xloc=-0.386,0.000,4.501, 0.162,0.000,0.000

Amp1itude

Phase

179.999994991044
-147.84514705819
-1.6444966596693
177.843932851192
-1.0951924824021
162.705069873042
-1.6964319900966
-178.70949187604
10.8830809884736
32.9057490005029

Phase

179.999994991044
-147.85030463473
-1.6539455362654
177.764153465522
-1.1629377342025
162.662332857737
-1.8646098653777
-174.52774920304
0.43274369142114
-65.188374618286

Phase



Fededed

etk

OoONOUVIAhWNRERO

FILE INPUT **
* FILE INPUT
FILE INPUT *¥

A_n

0.0
4.59524879477979
0.08861482685431
-0.0252585491024
9.2669440085E-03
-6.66074035E-03
3.7866494438E-04
3.6361800472E-04
-5.938749438E-05
8. 9195422295E 04

circ
it

B_n
-14156.568206666
-7.3167174291913
3.07865282837395
-0.6573739831733
0.45250199889881
-0.0167486082263
0.0156231907003
-0.0112738241858
2.167359264E-03
-5.385171848E-04

Polynomial fitting to tabulated values on a line

Component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 4.59580924557914
2 0.09062567627986
3 -0.0250227112021
4 0.01036629086909
5 -3.756424636E-03
6 9.7488853613E-04
7 6.4872970064E-04
g 3.5853526084E-04

skdr FT|E INPUT %%
*%% FILE INPUT *?

JORORONN

FILE INPUT *¥

9.5133143078E-04

circ
* fit

cosine term

B_n
-14156.809536304
-7.3198122079814
3.07882876040227
-0.659663417032
0.45391340593383
-0.0190566095737
0.01850433953311
-0.0138413415329
4.9311533615E-03
-8.613100132E-04

Polynomial fitting to tabulated values on a Tine

Component:

Fourier coefficients

order

n

OooONOUVIAWNRERO

FILE INPUT

Sine term

4.59242866874457
0.09104169946606
-0.0277250848964
8.7810788459€E-03
-5.167656277E-03
1.088014521E-03

-1.476576758E-03
1.5238214566E-03
1.7869684573E-03

T

FILE INPUT

FILE INPUT *¥¥¥%¥%%

circ
fit

cosine term
B_n

-14157.0334308
-7.3260645746097
3.08130036699055
-0.6633078177722
0.45351201906055
-0.0170964024314
0.01883459219835
-0.0131299173078
5.1254955246E-03
1.2865216655E-03

Po1ynom1a1 fitting to tabulated values on a line
Component: BY
Fourier coefficients

order Sine term cosine term

n A_n B_n
0 0.0 -14157.250146413
1 4.59369473540686 -7.3243464692022
2 0.0909208071963 3.08148213482303
3 -0.0274160580733 -0.6634682665212
4 8.8498984005E-03 0.4554072930726
5 -4.863599595E-03 -0.01923717737
6 -3.719449€e-05 0.01975871813659
7 -1.629066516E-03 -0.0160992561678
8 1.2800106708E-03 5.1448076077E-03

9 -1.419596163E-03

-3.488141032E-04

* FILE INPUT e

FILE INPUT circ

*%% FLLE INPUT ***%¥% fit

Polynomial fitting to tabulated values on a Tine

component: BY

Fourier coefficients
Oorder Sine term
n A_n

4.59484731534819
0.08976135010056
-0.0279429687192
0.01073542813791
-4.362520198E-03
6.0536434893E-04
-7.661359364E-05
-8.923509692E-04
6.3773610118E-04
Ttk FILE INPUT b o

* FILE INPUT

* FILE INPUT **

Cosine term

B_n
-14157.445386892
-7.3308804992314
3.08318678785693
-0.6631681869694
0.45291977050195
-0.0173890839966
0.01907923814028
-0.0118161656635
1.5040448509€-03
2.4205571508€E-03

OWoONOUVIRWNEREO

circ
< fit

55

14156.5682066664
.64006165629374
.07992789285615
.65785906397642
.45259687941774
.01802446502735
.01562777894641
.01127968660142
.1681727454E-03

.0419131894E-03

I—‘NOOOOOWOO

* set xloc=-0.387,0.000,4.250,0.153,0.000,0.000

Amp1itude

14156.8095363039
.64298058437387
.08016226018718
.66013783397581
.45403176108378
.01942331316973
.0185300024073
.01385653584615
.9441704065E-03
.2833107301E-03

I—‘LOOOOOWOO

* set xloc=-0.388,0.000,4.000, 0.144,0.000,0.000

Amp1itude

14157.0334308004
.64648039544755
.08264505622327
.66388699448799
.45359702245284
.01786033727263
.01886599159535
.01321268358177
.3472176133€e-03

.2019069606E-03

NLnOOOOOWOO

set xloc=-0.388,0.000,3.750, 0.135,0.000,0.000

Amplitude

14157.2501464134
.64569734162721
.08282317696211
.66403447269017
.45549327468735
.01984246945795
.01975875314465
.01618146800722
.3016481058E-03

.4618223366E-03

HU‘IOOOOOWOO

* set xloc=-0.389,0.000,3.500, 0. 126,0.000,0.000

Amplitude

14157.4453868919
.65184551095159
.08449312996275
.6637566223467
.4530469820326
.01792796209048
.01908883951445
.01181641403428
.7488399486E-03
.5031588553E-03

NHOOOOOWOO

* set xloc=-0.389,0.000,3.250, 0. 117,0.000,0.000

179.999994991044
-147.86920797982
-1.6487256778701
177.799578351724
-1.1732159360174
158.312814880565
-1.3884267339699
-178.15265762608
1.56956050195495
-121.12146816221

Phase

179.999994991044
-147.87697311984
-1.6860209433793
177.827661915806
-1.308270400441

168.848856803027
-3.015800875532

-177.31656348769
-4.1585548619044
-132.15684546337

Phase

179.999994991044
-147.9179755991

-1.6923984124558
177.606526784221
-1.1092448776924
163.181728541198
-3.3061207143177
173.58353085527

-16.557332714689
-54.248130516652

Phase

179.999994991044
-147.90481907159
-1.6900527787271
177.633745858299
-1.1132847602393
165.811625446259
0.10785541384169
174.221963737946
-13.971331170828
166.195129273418

Phase

179.999994991044
-147.9213437621

-1.667590859462

177.587232005513
-1.3578112388807
165.916472258888
-1.8173256545918
179.628506129039
30.6806878528157
-14.76010618008



Polynomial fitting to tabulated values on a line

component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 4.59332114366572
2 0.09013663357901
3 -0.0263842147121
4 9.9563785219E-03
5 -5.985043827E-03
6 6.1913960906E-04
7 -1.872383874E-04
g 5.0261780246E-04

Ttk

FILE INPUT *¥
* FILE INPUT

-3.26386608E-04

circ

Cosine term

B_n
-14157.633809878
-7.3311320543829
3.08202437407107
-0.6652081181202
0.45383025634573
-0.0184083281786
0.01845808553929
-0.0144471574121
4.2908390881E-03
2.8900869745E-04

Cosine term

B_n
-14157.800491908
-7.337385611849
3.08428952173693
-0.6680585388903
0.45418679466081
-0.0176201199422
0.0175873059377
-0.0123243087993
2.3132044113e-03

k%% FILE INPUT X X fit
Polynomial fitting to tabulated values on a Tline
Component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 4.59318114323953
2 0.0897675295642
3 -0.026530836026
4 9.5647017181E-03
5 -5.636173735€E-03
6 9.2950305856E-04
7 8.1319972317E-05
g 9.9393819547E-05
1.

etk

FILE INPUT
* FILE INPUT

6425494694E 03

circ

*%%% FILE INPUT *7¢ s f1t
Polynomial fitting to tabulated values on a line

Component:

BY

Fourier coefficients

order

n

OOONOUVIARWNRO

FILE INPUT ##%#%#
FILE INPUT
* FILE INPUT

Sine term

A_n
0.0
4.59436355380422
0.08820515618261
-0.0258214546247
8.5810253354E-03
-6.280177932E-03
3.1344083317E-04
-2.249789496E-04
-7.889267808E-04
6. 5836178767E 04

circ
fit

T

1.2034491658E-03

Cosine term
B_n

-14157.961297414
-7.3356892020472
3.0843212284509
-0.6683273400709
0.45580979115846
-0.0176308029328
0.01815089748055
-0.0129389977739
3.6283742089e-03
1.6948513252E-04

Polynomial fitting to tabulated values on a line

Cosine term
B_n

-14158.099915414
-7.3407164693181
3.0857861185668
-0.6707924495322
0.45648747661963
-0.0167189139701
0.01924334431473
-0.0135107722805
4.5585798105E-03
3.934927993E-04

Cosine term
B_n

-14158.229921005
-7.3428029741594
3.08593942744272
-0.6708604796545
0.45528585588289
-0.0165896729785
0.01846605898737
-0.0128060779173

component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 4.59384926948977
2 0.08893745979002
3 -0.0267548425349
4 0.01049672131629
5 -5.652394064E-03
6 -8.149117827E-04
7 2.169047057E-03
8 -1.617269568E-03
9 1.113139148E-03
* FILE INPUT **
FILE INPUT circ
FILE INPUT *¥*¥%%¥* fit
Po1ynom1a1 fitting to tabulated values on a line
component:
Fourier coefficients
order Sine term
n A_n
0 0.0
1 4.59348194257333
2 0.08920707708816
3 -0.0266677843158
4 9.5187455754E-03
5 -6.08738523E-03
6 1.7757830684E-03
7 -6.967472893E-04
8 3.7621976919E-04

2.4385695036E-03

56

AmpTitude

14157.6338098783
.65124825257295
.0833421566672
.66573115234226
.45393945746993
.01935684106295
.01846846652084
.01444837068684
.3201764704E-03
.3595211331€E-04

h¢NDCNDOCMNm

* set xloc=-0.390,0.000,3.000, 0. 108,0.000,0.000

AmpTitude

14157.8004919082
.6564739144515
.08559557675019
.66858514539622
.45428749483474
.01849959678335
.01761185129627
.01232457708476
.3153388045E-03
.0362363944E-03

NNKDOCNDCNMm

* set xloc=-0.390,0.000,2.750, 0. 099,0.000,0.000

AmpT1itude

14157.9612974138
.65566361023558
.08558221246009
.66882597213714
.45589055672576
.0187159249547
.01815360362312
.01294095355527
.7131529548E-03
.7982751754E-04

muu:ocx:cuum

set xloc=-0.391,0.000,2.500, 0. 090,0.000,0.000

AmpTitude

14158.099915414

8.65965180556988
3.08706751485831
0.67132580164069
0.45660814433051
0.0176485592327

0.01926059141431
0.01368377626064
4.8369629669E-03
1.1806419211E-03

set xloc=-0.391,0.000,2.250,0.081,0.000,0.000

AmpTitude

14158.2299210054
8.66122577202973
.08722853906998
.67139031411138
.45538535009851
.01767126222065
.01855124632016
.01282501806665
.4674202193E-03

NOOOOOW

Phase

179.999994991044
-147.9307929047

-1.6751901488307
177.728657503123
-1.2567847792145
161.989254668508
-1.9211521197788
179.25747048138

-6.6810331676711
48.4757625854845

Phase

179.999994991044
-147.95355455816
-1.667109674529

177.725783358824
-1.2064111990737
162.262004086592
-3.0253125968007
-179.62194348869
-2.460372873065

-53.770828078799

Phase

179.999994991044
-147.94096197877
-1.6380933150196
177.787419278709
-1.0785166542534
160.393848657733
-0.9893203114823
179.003855619041
12.2670317995734
-75.563544595283

Phase

179.999994991044
-147.9615012498

-1.6509020593249
177.715939168142
-1.3172581464491
161.320432965402
2.42489678350307
-170.87943901934
19.5334057214964
-70.531583062358

Phase

179.999994991044
-147.9708832483

-1.6558218304191
177.72359410274

-1.1977189319931
159.849977890529
-5.4929407267946
176.885742742182
-8.7703805064909



*% FILE INPUT **
“ FILE INPUT
* FILE INPUT *#*%%%%* fit

9

7.2699768521E-04 1.8509929804E-03 1.9886429161E-03

circ

Po1ynom1a1 fitting to tabulated values on a line

Ccomponent: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 4.5952167541058
2 0.08857929626807
3 -0.0258413526389
4 8.7506703959E-03
5 -3.332067883E-03
6 8.9942119588E-06
7 1.0853481562E-03
g 5.3559732175E-04

etk

JOSORONN

FILE INPUT *¥
* FILE INPUT
FILE INPUT *¥

-2.816920354E-04

Cosine term
B_h

-14158.349412381
-7.33868569985
3.08394816200746
-0.6696333037337
0.45649777080371
-0.0184750794974
0.01972887731915
-0.0153606832615
5.3531976682E-03
-1.711463046E-03

Polynomial fitting to tabu1ated values on a Tine

component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 4.59201094328114
2 0.08844519598309
3 -0.0269296217313
4 8.1642313932E-03
5 -5.677209114E-03
6 -2.007702681E-03
7 1.0158932713E-03
g -8.259916556E-04

etk

FILE INPUT ***
* FILE INPUT ¥

-1.191943046€E-03

circ

etk FIEE INPUT.****** fit .
Polynomial fitting to tabulated values on a line

Cosine term
B_n

-14158.447521735
-7.3438513562339
3.087892816178
-0.6736896931743
0.45782284204648
-0.0164449313905
0.01929340761166
-0.0132223720605
4.4844756493E-03
8.1568179223E-04

Cosine term
B_n

-14158.535440175
-7.3479062809218
3.09031833192728
-0.6728710230927
0.45655565358896
-0.0152302192824
0.01900477093102
-0.0124115179058
3.5192314751E-03
1.326350806E-03

Cosine term

B_n
-14158.612505078
-7.3483570758551
3.08699898999652
-0.6735309995811
0.45556293088043
-0.0158685733779
0.0166584483141
-0.0104802230417
2.5879058322E-03

component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 4.59370161147281
2 0.08829171451899
3 -0.0258873776498
4 8.3394359909E-03
5 -6.201410618E-03
6 3.6098896624E-04
7 -1.860798307E-03
8 1.7232603018E-04
9 -2.569554992E-03
* FILE INPUT **
* FILE INPUT *** circ
EX XX FILE INPUT EX XXX X fit
Polynomial fitting to tabulated values on a line
component:
Fourier coefficients
order Sine term
n A_n
0 0.0
1 4.59335458762689
2 0.08716661233849
3 -0.0255816254061
4 0.01004071950377
5 -8.523919668E-03
6 1.8167954726E-03
7 -9.235057894E-04
8 -1.135540423E-03
9 -1.4 784209E 03

FILE INPUT *
FILE INPUT
FILE INPUT **

circ
fit

6.0482415734E-05

Po1ynom1a1 fitting to tabulated values on a line

Component:

Fourier coefficients

order

n

PUWNRO

Sine term

4.59203195671465
0.08887865510683
-0.0242229563737
9.9412757004E-03

Cosine term

B_n
-14158.675670467
-7.345664825007
3.08896138342277
-0.6728932101017
0.45332350786646

57

set xloc=-0.391,0.000,2.000,0.072,0.000,0.000

AmpTitude

14158.3494123807
.65865606306182
.08522001770968
.67013173106152
.45658163452019
.01877315207442
.01972887936934
.01539897954025
.3799246989E-03

.7344901734€e-03

HUNDOCNDCHM&

* set xloc=-0.392,0.000,1.750, 0. 063,0.000,0.000

AmpT1itude

14158.4475217351
.6613346111135
.08915920549527
.67422771169382
.45789563152946
.01739731219937
.01939758869868
.01326134088413
.5599105325E-03
.4443216443€e-03

FLhOCMDOCNMw

“* set xloc=-0.392,0.000,1.500, 0. 054,0.000,0.000

AmpTitude

14158.5354401752
8.6656691148727

3.09157934064428
0.67336882170134
0.4566318112185

0.01644436295655
0.01900819905131
0.0125502329486

3.5234480891E-03
2.8916810539E-03

set xloc=-0.392,0.000,1.250,0.045,0.000,0.000

AmpTitude

14158.6125050778
.6658674165915
.08822939279874
.67401663700173
.45567356741479
.01801301828003
.01675722668053
.01052083351961
.8260765468E-03
.4140782669E-03

FWUOCMDOCMNW

* set xloc=-0.392,0.000,1.000,0.036,0.000,0.000

AmpTitude

14158.6756704671
8.66288342371252
3.09023977121691
0.67332906057625
0.45343249965888

-21.442958974965

Phase

179.999994991044
-147.94670191283
-1.6452367022222
177.790030113328
-1.0981763810946
169.776336364181
-0.0261206112699
-175.95833308375
-5.7135342471417
170.653404297231

Phase

179.999994991044
-147.98281091678
-1.640649949062

177.71091054005

-1.0216318847588
160.954017731557
5.94090702301863
-175.60651196566
10.4362892146395
55.6150108145679

Phase

179.999994991044
-147.98754705618
-1.6365196609548
177.796740246677
-1.0464471069071
157.844922404432
-1.0881823718987
171.473425585328
-2.8033603018034
62.6981569308117

Phase

179.999994991044
-147.9910725322

-1.6174129577995
177.824868781898
-1.2626086748872
151.757203406424
-6.224164066284

174.964161158677
23.6912590931188
87.5486165395428

Phase

179.999994991044
-147.98905206858
-1.6481161306756
177.938339334603
-1.2562812929621



etk

wooNoOW

* FILE INPUT **
* FILE INPUT
FILE INPUT *¥

-5.040079061E-03
1.8318835282E-03
1.7745276163E-03
-7.506521921E-04
1.1338622628E-03

-0.0158190456758
0.0170929423179
-0.013800694504
4.1333159689E-03
1.434817575E-04

Polynomial fitting to tabulated values on a line

Component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 4.59165418830533
2 0.09076069046191
3 -0.0259928389144
4 9.8575913419E-03
5 -4.419541976E-03
6 7.1797754072E-04
7 2.2312133451E-03
8 -2.05384079E-03
9 1.5032699322E-03

*%%% EFTLE INPUT el
* FILE INPUT
* FILE INPUT *%%%

cosine term
B_n

-14158.723523252
-7.3491740008368
3.09131442505941
-0.6738921040375
0.45596591342303
-0.0151676246722
0.01929099681195
-0.013726874812
5.156632008E-03
-5.006958879E-04

Polynomial fitting to tabu]ated values on a Tine

Component: BY
Fourier coefficients
order Sine term
n A_n
0 0.0
1 4.59192956806768
2 0.08935231707648
3 -0.0266295586874
4 0.01005545275263
5 -6.422151946E-03
6 1.6800135034E-03
7 -7.222659803E-05
8 5.052326518E-04
9 -1.904297593E-03

circ
* fit

cosine term
B_n

-14158.758309518
-7.3485964259094
3.08952809082879
-0.6753982659979
0.45647640965021
-0.0155860407484
0.01758545512209
-0.0119697198353
3.5443603157E-03
1.8121001434E-03

Polynomial fitting to tabulated values on a Tline

Ccomponent:

Fourier coefficients

order

n

*%%% FTILE INPUT Fededededek
* FILE INPUT **

* FILE INPUT **

OooONOUVBAWNRERO

Sine term

4.59416406656883
0.08838337659155
-0.0264405351835
9.3848125026E-03
-4.68288301E-03

5.3192865716E-04
-3.960022787E-04
8.1322045936E-04
-1.040430281E-03

circ

* fit

cosine term
B_n

-14158.772537517
-7.3545166251955
3.09082433652537
-0.6752013633226
0.45624546506019
-0.0154116260273
0.01891462926517
-0.0135744188693
4.9826414652E-03
4.17813784E-05

Polynomial fitting to tabulated values on a Tline

component:
Fourier coefficients
Order Sine term
n A_n
0 0.0
1 4.58928810387388
2 0.09173082194725
3 -0.0242591073493
4 8.7318785322E-03
5 -7.343389514E-03
6 4.7265315653E-04
7 1.823993355E-03
8 -8.514853933E-04
9 -2.155928109E-03
* FILE INPUT **¥**¥** and

Opera 3d Post-Processor Version 12.009

Cosine term

B_n
-14158.779791193
-7.3553624138344
3.09333809767548
-0.675976485128
0.45292483934065
-0.0165156176733
0.0180756380031
-0.0130811545133
1.3851914258E-04
1.8118474665E-03

58

0.01660254808864
0.01719082529561
0.01391431338776
4.2009260422E-03
1.1429044779€e-03

set xloc=-0.392,0.000,0.750,0.027,0.000,0.000

AmpTitude

14158.7235232517
.66565904473268
.09264650057414
.67439320545129
.4560724573034
.01579839199023
.01930435312948
.01390702718396
.5505959732E-03
.5844610633E-03

HUHDOCNDCHM%

set xloc=-0.392,0.000,0.500, 0.018,0.000,0.000

Amp1itude

14158.7583095183
.66531514654737
.09081990102742
.67592303637975
.45658714907146
.01685730410936
.01766552227427
.01196993774493
.5801885537E-03

.6286985852E-03

NUMDOCNDCHNm

wkEE FILE INPUT *¥***¥* set xJoc=-0.393,0.000,0.250, 0.009,0.000,0.000
* FILE INPUT
* FILE INPUT **

Amp1itude

14158.7725375174
8.67151995101375
3.09208775757016
0.67571886382839
0.45634197603738
0.016107377505

0.01892210739677
0.01358019386624
5.0485684591E-03
1.0412688668E-03

set xloc=-0.393,0.000,0.000,0.000,0.000,0.000

Amplitude

14158.7797911933
.66965521455183
.09469790613328
.676411644441
.4530090018912
.01807459533938
.0180818165632
.01320770817207
.6267892512E-04
.8161706719e-03

NOOOOOOWm

162.327685436911
-6.1171499417005
-172.67296525987
10.2933086261372
-82.787979256232

Phase

179.999994991044
-148.00346898228
-1.6817153557252
177.791122053709
-1.2384925697222
163.754930731436
-2.1314659650972
-170.76768456112
21.716953115923

-108.42142641392

Phase

179.999994991044
-147.9999012182

-1.656590818361

177.742110326768
-1.2619312031779
157.606124811099
-5.4571480680024
179.654270199407
-8.1126032700303
46.4211171652486

Phase

179.999994991044
-148.00810937009
-1.6379496765519
177.757467855714
-1.1783882940148
163.098385571593
-1.6108819772717
178.32899709517

-9.2695546736925
87.7003614429179

Phase

179.999994991044
-148.03840077785
-1.6985692607803
177.94467471087

-1.1044609626681
156.028483336488
-1.4978647276372
-172.06204010168
80.7600967385217
49.9562194788036

complete 8n 25/May/2008 at 19:5

47
0:02:31.53 (00:02:12. 29 cp)



Annex [A2]

#! C:\Perl164\bin\perl

my @SinCos025; # this is the array I'm
going to use. 1In each 'while' Toop, it will be refilled with the Tist (x, vy,
z, theta, phi, psi, cos0, sin0 ... cos9, sin9) and then printed

my $unefois;
$unefois = 0;
whiTle(<>)

@SinCos025=undef; # empties the
array (security)

iF(/A\\N([A\\]*0p3)/ and $unefois==0){ # this block contains what I

want to do only once : print the file name and the column headers

print "Model:";

print "\t".$1."\n\n";

print
"x\ty\tz\ttheta\tphi\tpsi\tCos0\tSin0O\tCosl\tSinl\tCos2\tSin2\tCos3\tSin3\tCos
4\tSin4\tCosS§tSigﬁ\tCOSG\tsin6\tcos7\tsin7\tC058\tSin8\tcos9\tsin9\n";

unefois = 1;

next unless /set xloc/;
if (/(set xToc=(.*))/) # this searches for the 1ine

containing 'set xloc'

my $loc=$2;

($x, %y, %z, $theta, $phi, $psi)=split(',',$Toc); # this
splits it and assigns its values (x,y,z,theta,phi,psi) to variables with
corresponding names

$SinCos025[0]=%x; # I'm now filling the 6 first
terms of my 1list

$5inCos025[1]=%y;

$SinCos025[2]=%z;

$sinCos025[3]=%$theta;

$5Si1nCos025[4]=%phi;

) $SinCcos025[5]=%$psi;

file

$_=<>;%$_=<>;%_=<>;%_=<>; # this is used to skip 4 Tlines in the input

next unless /Component:\s*BY/;

$_=<>;%_=<>;%_=<>;$_=<>;# now we've found the first line containing
multipole values

Eor($i=0;$i<10;$i++)

($n,%an,$bn, $amp, $phase)=split; # $an is sine term, $bn

$ii = 6+42%%1;

$iii = 642*%%1 + 1;

$SinCos025[$11]=%bn;

$Sincos025[$iiil=%an; # this loop fills
the items #6 (it's actually the 7th) to #25 of my list

$_=<> unless $i==9;

is cosine

1

foreach $SinCos025 (@SinCos025) {print "$SinCos025\t"}; # actually
prints the Tline

print "\n";

}

# additionnal column 'foot' headers (may help for long files):

print
"x\ty\tz\ttheta\tphi\tpsi\tCos0\tSin0O\tCosl\tSinl\tCos2\tSin2\tCos3\tSin3\tCos
A\tSin4\tCos5\tSin5\tCos6\tSin6\tCos7\tSin7\tCos8\tSin8\tCos9\tSin9\n";
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Annex [A3]

ACTIVATE CASE=1 MODELSYMMETRY=DATABASE | LOAD
SELECT ACTION=DEFAULT | SELECT ACTION=SELECT OPTION=SURFACES |
THREED OPTION=GETVIEW | THREED OPTION=SETVIEW ROTX=-90 ROTY=0.01
ROTZ=0.01 SIZE=100 PERSPECTIVE=NO

SET FIELD=NODAL COIL=NODAL

set XLOCAL=0,YLOCAL=0, ZLOCAL=0, PLOCAL=0, TLOCAL=0, SLOCAL=0
CIRCLE RADIUS=1 TH1=0 TH2=360 ZC=0 NP=60 | PLOT FILE=TEMP COMPONENT=By
FIT TYPE=FOURIER FILE=TEMP COMP=By ORDER=10 PRINT=YES
set xloc=1.374,0.000,74.981,2.699,0.000,0.000
circ

fit

set xloc=1.362,0.000,74.731,2.690,0.000,0.000
circ

fit

set xloc=1.350,0.000,74.481,2.681,0.000,0.000
circ

fit

set xloc=1.338,0.000,74.232,2.672,0.000,0.000
circ

fit

set xloc=1.327,0.000,73.982,2.663,0.000,0.000
circ

fit

set xloc=1.315,0.000,73.732,2.654,0.000,0.000
circ

fit

set xloc=1.304,0.000,73.482,2.645,0.000,0.000
circ

fit

set xloc=1.292,0.000,73.232,2.636,0.000,0.000
circ

fit

set xloc=1.281,0.000,72.983,2.627,0.000,0.000
circ

fit

set xloc=1.269,0.000,72.733,2.618,0.000,0.000
circ

fit

set xloc=1.258,0.000,72.483,2.609,0.000,0.000
circ

fit

set xloc=1.246,0.000,72.233,2.600,0.000,0.000
circ

fit

set xloc=1.235,0.000,71.984,2.591,0.000,0.000
circ

fit

set xloc=1.224,0.000,71.734,2.582,0.000,0.000
circ

fit

set xloc=1.213,0.000,71.484,2.573,0.000,0.000
circ

fit

set xloc=1.201,0.000,71.234,2.564,0.000,0.000
circ

fit

set xloc=1.190,0.000,70.985,2.555,0.000,0.000
circ
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fit

set xloc=1.179,0.000,70.735,2.546,0.000,0.000
circ

fit

set xloc=1.168,0.000,70.485,2.537,0.000,0.000
circ

fit

set xloc=1.157,0.000,70.235,2.528,0.000,0.000
circ

fit

set xloc=1.146,0.000,69.985,2.519,0.000,0.000
circ

fit

For paper economy reasons this file only presents the first 5 cm and
the last 5 cm of the trajectory that the circle along which the field
is evaluated in the model follows.

set xloc=-0.385,0.000,5.001,0.180,0.000,0.000
circ

fit

set xloc=-0.385,0.000,4.751,0.171,0.000,0.000
circ

fit

set xloc=-0.386,0.000,4.501,0.162,0.000,0.000
circ

fit

set xloc=-0.387,0.000,4.250,0.153,0.000,0.000
circ

fit

set xloc=-0.388,0.000,4.000,0.144,0.000,0.000
circ

fit

set xloc=-0.388,0.000,3.750,0.135,0.000,0.000
circ

fit

set xloc=-0.389,0.000,3.500,0.126,0.000,0.000
circ

fit

set xloc=-0.389,0.000,3.250,0.117,0.000,0.000
circ

fit

set xloc=-0.390,0.000,3.000,0.108,0.000,0.000
circ

fit

set xloc=-0.390,0.000,2.750,0.099,0.000,0.000
circ

fit

set xloc=-0.391,0.000,2.500,0.090,0.000,0.000
circ

fit

set xloc=-0.391,0.000,2.250,0.081,0.000,0.000
circ

fit

set xloc=-0.391,0.000,2.000,0.072,0.000,0.000
circ

fit
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set xloc=-0.

circ
fit

set xloc=-0.

circ
fit

set xloc=-0.

circ
fit
set xloc=-0
circ
fit

set xloc=-0.

circ
fit

set xloc=-0.

circ
fit

set xloc=-0.

circ
fit

set xloc=-0.

circ
fit
end

392,0.

392,0.

392,0.

.392,0.

392,0.

392,0.

393,0.

393,0.

000,1.

000,1.

000,1.

000,1.

000,0.

000,0.

000,0.

000,0.

750,0.

500,0.

250,0.

000,0.

750,0.

500,0.

250,0.

000,0.

063,0.

054,0.

045,0.

036,0.

027,0.

018,0.

009,0.

000,0.
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Annex [A4]

Node: CASNRUIZ. Processor: EM64T/x64. System: windows XP Professional
x64 Edition (Service Pack 2)

| Opera-3d Analysis version 12.009 started on 01/May/2008 at
16:01:52 |

|
- |

Opening database complete 00:00:00.09
(00:00:00.03 cp)

Simulation 1 started at 16:01:55

Opening database ...riFull\Full_abh_jbl4kG_05Current.op3, simulation

number 1 on 01/May/2008 at 16:01:55

DETAILS OF SIMULATION

TOSCA Magnetostatic analysis

File: Full_abh_jbl4kG_05Current.op3 simulation: 1

Created on: 01/May/2008 16:00:09

In Directory: C:\Documents and Settings\nruiz\My
Documents\TOSCA\Spoiling\abh_jbl4kG\abh_jbl4kG pole swaps
tests\oriFull\

By Machine: Node: CASNRUIZ. Processor: EM64T/x64. System: Windows.
version XP Professional x64 Edition (Service Pack 2)

Log Files: oOpera3d_Modeller_9.1og/Tp

Simulation created using: Opera-3d/Modeller version 12.009

User did not enter a title

Mixed CGS units

1 Biot-Savart conductor (current densities in A cm**-2):
1 Racetrack
Current Densities: 510.0
Adaptive RHS integrals
Drive sets and functions
COND1 : Coil drive type Constant
Scaling factor: 0.5

Boundary Conditions: TANGMAGN

Non linear iteration data

Newton-Raphson Iterations

Maximum Iterations: 40

Tolerance: 1.0E-03

No periodicity conditions have been defined

Materials defined:
AIR
JLAB
Isotropic permeability: M:/opera/shared/JLab S-R.bh (3763.179)

7934939 nodes in the model
11230468 edges in the model
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Mixed Tinear and quadratic tetrahedral elements
4275047 linear tetrahedra
5346565 quadratic tetrahedra

Loading problem description complete 00:00:16.18
(00:00:14.60 cp)
)S%tt]ng scalar potential to 0 at node 1 at (-17.13297,149.56413,0.0
cm
Checking periodicity transformations
Checking connectivity of potential regions:
2 automatic potential cuts have been added.
Preparing data complete 00:04:14.63
(00:04:08.15 cp)
Problem size information
Number of elements : 9621612
Number of nodes : 7934939
Number of equations : 7752319
Number of non-zeros : 109689916

Forming Matrix Sparsity complete 00:01:33.82
(00:01:21.14 cp)
selecting coil field calculations complete 00:00:37.29

(00:00:37.04 cp)

Coil set with drive Tabel COND1
Calculating coil fields at 947415 nodes
Coil fields computed at 94741 nodes
Coil fields computed at 189482 nodes
coil fields computed at 284223 nodes
Ccoil fields computed at 378964 nodes
Coil fields computed at 473705 nodes
Coil fields computed at 568446 nodes
Coil fields computed at 663187 nodes
Coil fields computed at 757928 nodes
Coil fields computed at 852669 nodes
Coil fields computed at 947410 nodes
Calculating nodal coil fields complete 00:06:21.78

(00:06:16.29 cp)

Coil set with drive Tlabel COND1

Calculating Tine integrals along 140939 edges
Coil field Tine integrals computed along 14093 edges
Ccoil field 1ine integrals computed along 28186 edges
Ccoil field Tine integrals computed along 42279 edges
Coil field Tine integrals computed along 56372 edges
Ccoil field 1ine integrals computed along 70465 edges
Ccoil field Tine integrals computed along 84558 edges
Ccoil field Tine integrals computed along 98651 edges
Coil field 1ine integrals computed along 112744 edges
Ccoil field Tine integrals computed along 126837 edges
Coil field Tine integrals computed along 140930 edges

Total number of field calculations: 318231

Average number of field calculations per edge: 2.2579

Calculating edge integral coil fields complete 00:01:57.89

(00:01:56.14 cp)

Coil set with drive label COND1

DSLUCG iterations: 1614 Relative change= 0.99230E-12
Error in nodal potential jump calculation: 1.3506E-05%
Calculating nodal potential jump values complete 00:01:52.98
(00:01:51.35 cp)

Coil set with drive label COND1

Ca1cu1atin% face integrals of Nodal WH.n over 121642 faces
Ccoil field integrals computed over 12164 faces
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Coil field integrals computed over 24328 faces

Ccoil field integrals computed over 36492 faces

Coil field integrals computed over 48656 faces

Coil field integrals computed over 60820 faces

Ccoil field integrals computed over 72984 faces

Coil field integrals computed over 85148 faces

Coil field integrals computed over 97312 faces

coil field integrals computed over 109476 faces

Coil field integrals computed over 121640 faces
Total number of field calculations: 851494
Average number of field calculations per face: 7.0
Calculating face integral coil fields complete 00:05:23.00
(00:05:18.14 cp)
Evaluating coil field calculations complete 00:15:45.51
(00:15:31.67 cp)
Initial residual: 51325575.

Nonlinear iteration 1 started at 16:29:13
Simple nonlinear update

DSLUCG 1iterations: 1071 Relative change= 0.99336E-08
Iterative matrix solution complete 00:53:46.51

(00:52:21.56 cp)
Residual: 918.042188, relaxation factor: 1.0

Relaxing solution change complete 00:02:46.46
(00:02:38.42 cp)

NonTlinear qiteration 1 complete 00:56:34.96
(00:55:01.96 cp)

Nonlinear iteration 2 started at 17:25:48
Newton-Raphson nonlinear update

DSLUCG iterations: 499 Relative change= 0.51251E-06

Iterative matrix solution complete 00:27:10.12

(00:26:30.60 cp)

Residual: 1161.05011, relaxation factor: 0.0625

Congergence indicators (Changes): 1.188E-03, 0.7129258 (target 1.0E-
03

Relaxing solution change complete 00:13:31.27
(00:13:10.15 cp)

NonTinear iteration 2 complete 00:43:40.33
(00:42:36.01 cp)

Nonlinear iteration 3 started at 18:09:29
Simple nonlinear update

DSLUCG 1iterations: 375 Relative change= 0.94291E-08

Iterative matrix solution complete 00:18:02.80

(00:17:34.84 cp)

Residual: 1216.13381, relaxation factor: 0.0625

Cconvergence indicators (Changes): 6.653E-04, 0.1579107 (target 1.0E-
03

Relaxing solution change complete 00:18:28.10
(00:18:00.89 cp)
Nonlinear iteration 3 complete 00:36:32.87
(00:35:37.68 cp)
Nonlinear iteration 4 started at 18:46:02

Newton-Raphson nonlinear update

Jacobian terms relaxed 0.25

DSLUCG iterations: 459 Relative change= 0.54109E-06

Iterative matrix solution complete 00:24:50.53
(00:24:14.12 cp)

Residual: 1288.01111, relaxation factor: 0.0625

Congergence indicators (Changes): 7.163E-04, 0.2656289 (target 1.0E-
03

Relaxing solution change complete 00:18:27.83
(00:17:51.71 cp)
NonTinear iteration 4 complete 00:45:49.11
(00:44:33.56 cp)
Nonlinear iteration 5 started at 19:31:51
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Newton-Raphson nonlinear update

Jacobian terms relaxed 0.469519

DSLUCG iterations: 469 Relative change= 0.57058E-06

Iterative matrix solution complete 00:19:37.50
(00:19:02.87 cp)

Residual: 1382.28799, relaxation factor: 0.0625
Ogongergence indicators (Changes): 7.712E-04, 0.3138164 (target 1.0E-

Relaxing solution change complete 00:12:47.32
(00:10:46.79 cp)
Nonlinear iteration 5 complete 00:34:59.68

(00:32:18.12 cp)

Nonlinear iteration 6 started at 20:06:51
Newton-Raphson nonlinear update

Jacobian terms relaxed 0.422676

DSLUCG 1iterations: 466 Relative change= 0.58270E-06

Iterative matrix solution complete 00:18:34.14
(00:18:16.92 cp)

Residual: 1472.25805, relaxation factor: 0.0625
0gonvergence indicators (Changes): 7.257E-04, 0.4191024 (target 1.0E-

Relaxing solution change complete 00:15:21.17
(00:15:06.65 cp)

NonTinear iteration 6 complete 00:36:23.60
(00:35:50.06 cp)

Nonlinear iteration 7 started at 20:43:14
Simple nonlinear update

DSLUCG iterations: 373 Relative change= 0.97914E-08

Iterative matrix solution complete 00:14:53.17

(00:14:39.64 cp)

Residual: 1532.67238, relaxation factor: 0.0625

Con;ergence indicators (Changes): 5.734E-04, 0.2428453 (target 1.0E-
03

Relaxing solution change complete 00:15:21.18
(00:15:06.78 cp)

Nonlinear iteration 7 complete 00:30:16.25
(00:29:48.31 cp)

NonTlinear iteration 8 started at 21:13:30
Newton-Raphson nonlinear update

DSLUCG iterations: 507 Relative change= 0.58644E-06

Iterative matrix solution complete 00:20:13.05

(00:19:53.83 cp)

Residual: 1841.47389, relaxation factor: 0.0625

Convergence indicators (Changes): 1.074E-03, 1.1762944 (target 1.0E-
03

Relaxing solution change complete 00:13:10.13
(00:12:57.45 cp)
Nonlinear iteration 8 complete 00:35:51.51

(00:35:17.81 cp)

Nonlinear iteration 9 started at 21:49:22
Newton-Raphson nonlinear update

Jacobian terms relaxed 0.411812

DSLUCG iterations: 466 Relative change= 0.62560E-06

Iterative matrix solution complete 00:18:37.17
(00:18:20.36 cp)

Residual: 2137.60026, relaxation factor: 2.0
Ogongergence indicators (Changes): 6.535E-04, 0.7008913 (target 1.0E-

Relaxing solution change complete 00:13:07.97
(00:12:57.15 cp)
NonTinear iteration 9 complete 00:34:13.46

(00:33:44.01 cp)

NonTinear iteration 10 started at 22:23:36
Newton-Raphson nonlinear update
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Jacobian terms relaxed 0.661812

DSLUCG 1iterations: 955 Relative change= 0.84330E-06

Iterative matrix solution complete 00:37:53.64
(00:37:20.73 cp)

Residual: 2166.07792, relaxation factor: 0.0625
Ogongergence indicators (Changes): 3.337E-04, 1.0089306 (target 1.0E-

Relaxing solution change complete 00:21:55.24
(00:21:35.42 cp)
NonTlinear iteration 10 complete 01:02:18.97

(01:01:22.66 cp)

NonTinear iteration 11 started at 23:25:55
Newton-Raphson nonlinear update

Jacobian terms relaxed 0.912046

DSLUCG iterations: 1028 Relative change= 0.85639E-06

Iterative matrix solution complete 00:40:51.46
(00:40:14.18 cp)

Residual: 2287.02397, relaxation factor: 2.0
0(3:onvergence indicators (Changes): 5.793E-04, 1.8099201 (target 1.0E-

Relaxing solution change complete 00:13:08.50
(00:12:57.60 cp)
Nonlinear iteration 11 complete 00:56:30.22
(00:55:38.41 cp)
Nonlinear iteration 12 started at 00:22:25

Newton-Raphson nonlinear update

Jacobian terms relaxed 0.897612

DSLUCG iterations: 1042 Relative change= 0.11989E-05

Iterative matrix solution complete 00:41:22.56
(00:40:44.11 cp)

Residual: 848.204579, relaxation factor: 1.0
Ogongergence indicators (Changes): 7.087E-04, 0.585946 (target 1.0E-

Relaxing solution change complete 00:02:11.53
(00:02:09.73 cp)

Nonlinear iteration 12 complete 00:46:02.47
(00:45:20.40 cp)

NonTlinear iteration 13 started at 01:08:27
Newton-Raphson nonlinear update

DSLUCG iterations: 491 Relative change= 0.45054E-05

Iterative matrix solution complete 00:19:34.78

(00:19:16.14 cp)

Residual: 180.909221, relaxation factor: 1.0

Convergence indicators (Changes): 3.971E-04, 0.7704239 (target 1.0E-
03

Relaxing solution change complete 00:02:11.56
(00:02:09.76 cp)

NonTinear iteration 13 complete 00:24:14.69
(00:23:52.45 cp)

NonTlinear iteration 14 started at 01:32:42
Newton-Raphson nonlinear update

DSLUCG iterations: 412 Relative change= 0.18134E-04

Iterative matrix solution complete 00:16:26.10

(00:16:11.29 cp)

Residual: 12.749083 , relaxation factor: 1.0

convergence indicators (Changes): 2.829E-05, 0.0614732 (target 1.0E-
03 )

Relaxing solution change complete 00:02:11.53
(00:02:09.71 cp)

Nonlinear iteration 14 complete 00:21:05.97
(00:20:47.56 cp)

NonTlinear iteration 15 started at 01:53:48
Newton-Raphson nonlinear update

DSLUCG iterations: 382 Relative change= 0.99830E-04
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Iterative matrix solution complete 00:15:15.55
(00:15:00.82 cp)

Residual: 0.18251914, relaxation factor: 1.0
0(3:onvergence indicators (Changes): 1.149e-06, 1.604E-03 (target 1.0E-

Relaxing solution change complete 00:02:11.56
(00:02:09.76 cp)

Nonlinear iteration 15 complete 00:19:55.53
(00:19:37.21 cp)

Nonlinear iteration 16 started at 02:13:44
Newton-Raphson nonlinear update

DSLUCG iterations: 603 Relative change= 0.94756E-04

Iterative matrix solution complete 00:24:01.35

(00:23:38.78 cp)

Residual: 3.2401E-04, relaxation factor: 1.0

Congergence indicators (Changes): 7.914E-07, 1.932E-04 (target 1.0E-
03

Relaxing solution change complete 00:02:11.62
(00:02:09.78 cp)
Nonlinear iteration 16 complete 00:28:41.29

(00:28:15.07 cp)

Calculating nodal fields started

Generating nodal H fields complete 00:02:12.15
(00:02:10.34 cp)

Enforcing H fields on boundaries complete 00:00:53.79
(00:00:53.76 cp)

Adjusting midside nodal values complete 00:02:09.49
(00:02:05.90 cp)

Generating nodal B fields complete 00:02:12.85

(00:02:11.03 cp)
Estimated error in B Field: RMS = 5.95158 %, Weighted RMS = 0.491265%

Calculating error estimate complete 00:04:31.71

(00:04:28.10 cp)

Calculating nodal fields complete 00:12:00.29

(00:11:49.42 cp)

Simulation 1 complete at 02:54:34
10:52:39.07

(10:37:58.52 cp)

I
| opera-3d Analysis version 12.009 complete on 02/May/2008 at

02:54:34
| 10:52:42.47
(10:37:58.60 cp) |
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