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Abstract 

 

In order to eventually guide the electrons throughout the accelerator up to their highest 

energy, the beam trajectory has to be simulated for the entire accelerator with 

appropriate numerical codes, such as ELEGANT, Optim, etc. prior to the actual facility 

construction. In the 12 GeV project framework, constraints are tighter than they were 

for the 6 GeV machine and the accuracy of the simulations have to catch up. Since 

measured data concerning the elements are not available in many cases, local scale 

simulations acquire a very particular importance for they can be the only way available 

to determine the characteristics that will be used to introduce each magnet into whole-

accelerator simulations. The present study focuses on a possible improvement of those 

local simulations by making them take into account more realistic parameters such as 

machining defects. 

 

The local scale simulation tool used in this study takes a large number of characteristics 

of the magnets into account. However, none of the simulations realized so far included 

geometry imperfections. The poles were assumed to be  perfectly parallel, their surface 

to be perfectly plane... Those assumption appeared to be valid up to now, but since both 

fields and steel saturation in the magnets of the 12 GeV-configured lattice are going to 

be much higher than in the present 6 GeV machine, the idea of taking geometrical 

imperfections into account arose from the concern of being able to precisely specify the 

tolerances that were to be required for the new magnets. 

 

The first models comprising simulations of machining defects are created throughout 

this study, and a valid perturbation modeling technique is developed. A strong 

correlation is observed between the first skew multipole terms of the field and the 

amplitude of the geometrical perturbation and conclusions are drawn concerning the 

field perturbations induced in the zone located between the magnet poles. However, the 

mesh densities reached at the time of this study and the field evaluation techniques that 

were exploited did not allow to draw conclusions regarding the influence of the edges of 

the magnet poles whose study remains for further work on the subject. 

 

Discrepancies between the actual values of the simulated field perturbations and the 

measured data that is available are addressed and some advice is dispensed concerning 

future parts specifications and assembly. The final word however recalls that actual 

direct measurements of what was simulated are of course desired to qualify the results 

and the conclusions.  
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Introduction  

 

 

 

 

This document presents the work realized by the author for his master thesis under the 

direction of Jay Benesch. It is divided in six main parts. 

 

The two first parts explain the origins of the concern founding this study as well as the 

strategy that was elected in order to establish conclusive results. The third part relates 

step by step the proceeding that has been followed, in accordance with the above 

mentioned strategy. Part four presents the results of the study along with their 

interpretation. The practical conclusions that can be deduced from those results are 

listed in part five. References, bibliography and annexes constitute the sixth and last 

part of this document. 

 

Note: Out of concern for consistency with the scientific procedures being followed 

among the physicists at Jefferson lab, every value in this document is given in the CGS 

unit system, unless explicitly indicated otherwise. 
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II   --  II nnii tt iiaall   ccoonncceerr nn  

 

II..11  --  IInnii ttiiaall   ssii ttuuaattiioonn  

 

In order to be able to guide the electrons throughout the accelerator as their energy gets 

higher and higher, the beam trajectory has to be simulated for the entire accelerator with 

appropriate numerical codes, such as ELEGANT, Optim, etc. prior to the actual facility 

construction. This has been done for the 6-GeV current configuration of the CEBAF so 

that accelerator designers could know in advance where to put the magnets and how to 

tune them.  

To realize the 12-GeV upgrade, a different configuration is required, with new or 

modified parts, higher fields... The constraints are tighter and the accuracy of the 

simulations have to catch up. 

 

In whole-accelerator simulations, and because the CEBAF counts more than 2000 

magnets, each element cannot be modeled with its entire geometry (coils, steel, current 

density...). Instead, each element (magnets, filters...) of the lattice is represented by a set 

of relevant numerical values, like the integrated field 'seen' by the particles traversing it 

for example, that tells the code how to take into account the influence of this particular 

element while it computes the beam trajectory. It's a form of multi-scale modeling. 

Those relevant characteristics must be evaluated for each part, as accurately as possible, 

since the setup of the whole accelerator depends on it. 

 

The best case occurs when the parts already physically exist and we can make proper 

measurements of their characteristics. Unfortunately, measurements take time, and the 

equipment necessary to perform them can be expensive and is not always available. As 

a result, even in the case of pre-existing 6-GeV parts, many of the characteristics used to 

simulate the role of these elements had to be evaluated by simulations instead of being 

actually measured.  

Moreover, in the 12-GeV upgrade case, many parts are new or modified, so that their 

modeling acquires a very particular importance for it is the only way available to 

determine the characteristics that will be used for their integration into whole-

accelerator simulations. 

 

The present study takes place in that context, focusing on a possible improvement of 

those local simulations by making them take into account more realistic parameters such 

as machining defects. 

 

II..22  --  OObbjjeeccttiivvee  ooff   mmyy  wwoorrkk  

 

As the previous section explained, a series of relevant parameters is determined for each 

element of the accelerator, either by physical measurement or by simulation of the 

element's magnetic field on a local scale, for it to represent the modeled element in 

future larger scale simulations. 

 

The local scale simulation tool used in this study (see section II.3.1.1) takes a large 

number of characteristics of the magnets into account: the disposition of the coils as 

well as their current density, the geometry of the return steel, magnetic properties of the 

steel (editable B-H curve), etc. 
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However, none of the simulations realized so far with this tool took geometry 

imperfections into account. The poles were assumed to be  perfectly parallel, their 

surface to be perfectly plane... In other words, no machining or assembly defects were 

taken into account while defining the geometry of the modeled magnets. Their influence 

on the field dispensed by the magnet was therefore not present in the results of the 

simulations, resulting in its not being taken into account in larger scale simulations 

either. 

 

Since the fields in the magnets of the 12GeV-configured lattice are going to be higher 

than they currently are, thus placing their steel into a saturated state in many volumes, 

the idea of taking geometrical imperfections into account arose from the concern of 

being able to precisely specify the tolerances that were to be required for the new 

magnets. 

 

The objective of this study is to realize the first models that would take machining 

defects into account, and to gather information regarding their effect on the magnetic 

field. Possible results are: 

 - a better understanding of the current machine and of what has been neglected 

so far 

 - a finer notion of the correlation between the mechanical tolerances that lab 

designers specify for the magnets and the undesired field components that can be 

expected to arise from those specifications 
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II II   --  SSttrr aatteeggyy  

 

The approach that was first decided is the following. All this process is then detailed 

step by step in the next section (II.3- Technical description of the study). 

 

The first step is to get acquainted with the modeling tool and its morphing functions, in 

order to be able to introduce geometrical perturbations in pre-existing magnet models. 

 

Then, with the help of my supervisor and according to relevant criteria, a specific 

magnet in the lattice is selected for geometric perturbations effects on the field to be 

studied using its model. This election is crucial for the results of this study to be of 

interest in the design and specification of other magnets. 

 

Once the magnet is chosen and its technical drawing is acquired, design machining 

tolerances are evaluated. The idea is to start by determining a tolerance-fulfilling 'worst 

machining case' to work on, to have an order of magnitude of the maximum field 

perturbation that the current design is allowing. Once again, different scientific criteria 

are taken into account in this case election, for geometrical product specification 

intrinsically leaves degrees of freedom in part machining.  

 

Chosen geometrical imperfections are then introduced in the original magnet model. 

After processing, field calculations reveal, as expected, the apparition of new magnetic 

field components, that were negligible in unperturbed models. 

 

The next and concluding step of the study is to try and establish correlations between 

the perturbations introduced and the induced modifications of the field. This paper 

mainly focuses on the amplitude of the perturbations, and relates discovered relations 

between magnet machining quality and unwanted field components. 
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II II II   --  TTeecchhnniiccaall   ddeessccrr iipptt iioonn  ooff   tthhee  ssttuuddyy  

 

II II II..11  --  DDeessccrriippttiioonn  ooff   tthhee  mmooddeell iinngg  eennvvii rroonnmmeenntt  

 

 

II I.1.1 - Software resources 

 

Magnetic calculations 

 

The numerical code used in this study to model geometries and calculate fields is called 

Opera 3D. It is written by a British company named Vector Fields [1]. The code has 

different modules which correspond to the type of physical values one wants to 

calculate (static or varying electric and magnetic fields, thermal and stress analysis... ) 

and in the present case, the solver used for static magnetic fields is called Tosca. 

The scheme for the use of those solvers is the standard pre-processing/solving/post-

processing one. Here it is as explained on the company's website: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The most recent pre-processing tool is called the 'Modeller'. It allows you to create 3D 

volumes and perform simple Boolean operations on them or either import the geometry 

of your system from another CAD tool. It can also create coils of any shape, and one 

defines the current that runs through them. In the end, once the required geometry as 

well as the field sources are defined, a mesh generator based on the ACIS kernel fills 

the model with finite elements. 

 

Then Tosca, a finite element code, computes the magnetic field in every part of the 

model using Newton-Raphson relaxation to deal with the steel, whose magnetic 

properties are non-linear. 

An example of a calculation report emitted by the code is available in annex [A4]. 

 

 

 

 

 

 

 

 

 

Fig. II.1: Utilization scheme for the Opera 3D numerical code 

Fig. II.2: The Vector Fields logo 
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Post processing 

 

The process used to study the field in the solved models is described in details in section 

II.3.5. It uses the Opera 3D post processor for initial field evaluations, whose result are 

treated in spreadsheets [2] [3] afterwards. Those have mathematical and statistical 

calculation capabilities that are necessary to make the field evaluations exploitable. 

Their graphical representation functionalities are also very useful when it comes to 

comparing models, fields... 

The data coming out of the post processor is converted into a spreadsheet-friendly 

format by a Perl script written by the student. An shortened example of a post processor 

output file as well as the Perl script are available in annexes [A1] and [A2]. 

 

II I.1.2 - Morphing tools 

 

Since the objective of the study is to take geometrical imperfections into account, it is 

necessary to get familiar with the options offered by the code that can be used to model 

such imperfections. 

The Opera 3D modeler offers different functions for model distortion. 

The main ones are: 

 

 - twisting, defining an axe with two points and an angle of torsion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 - stretching, again defining an axe with two points and an axial displacement for each 

of them 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. II.4: twisting operation in 

the modeler 

 

Fig. II.5: stretching illustration 

fig. II.3: Original Block 

used in illustrations 
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fig.II.6: Bended volume 

 

 

 - bending, creating a local coordinate system to 

define the bending plane, and then choosing an 

angle and a radius for the bend  

 

 

 

 

 

 

 - the modeler also has a 'general morph' 

option, which performs any transformation to each of the coordinates, as long as a 

Cartesian equation is available for that function, which must be properly defined in the 

treated volume coordinates range. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II I.1.3 - Hardware resources 

 

In order to be able to realize the modeling, meshing and solving operations that this 

magnetic field fine study requires in good conditions, an appropriate workstation has 

been used. The calculations made by the student were realized on a machine with the 

following characteristics: 

 

Make    : Dell 

Model    : Precision PWS490 

Processor   : Intel Xeon X5355 @ 2.66 GHz (QuadCore) 

Memory   : 16 GB of RAM 

 

 

Operating system  : Microsoft Windows XP 

fig. II.7: Example of a general morph. Here the 'Y' coordinate is modified to 

follow the curve of an ellipse. 
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     Professional x64 Edition 

     Version 2003, Service Pack 2 

 

Apart from these calculation resources, the student was provided with the appropriate 

means of communication with the other scientists: email, telephone, ... 

In addition, the workplace was equipped with a common fax, copier and laser printers. 

 

 

II II II..22  --  DDeessccrriippttiioonn  ooff   tthhee  ppaarrtt  cchhoosseenn  ffoorr  tthhee  ssttuuddyy    

 

II I.2.1 - Context 

 

The 12-GeV upgrade as we have described it from the outside in section I.2.2 has a lot 

of repercussions on a local scale. As well as some parts are added, others are modified. 

Figure II.8 shows how some magnets of the spreaders and recombiners will be added 

some more return steel in order to be able to support more field lines as the field they 

shall produce in the 12-GeV configuration will drive them into saturation. Figure II.9 

shows a prototype. 

 

 

 

 

=> The part elected for this study is one of those extended magnets. 

 

 

II I.2.2 - Magnet description 

 

The current form of the elected magnet has the codename: MAB6R. 

'MAB' simply stands for Magnet AB, since the numeration chosen for the magnets is 

made with letters (AA, AB, AC...). The number '6' indicates that the magnet is situated 

on the 6
th
 arc, which corresponds to the third pass in the second (western) arc. Finally 

the 'R' stands for Recombiner, as the magnet is part of the second ( see Figure II.10) 

recombiner. Figure II.11 situates one of the MAB6R magnets. The number '03' is a local 

numeration, for this very magnet is used several times. 

 

 

 

 

 

 

fig. II.9: Prototype dipole 

with added H-steel 

fig. II.8: Schematic representation of the return steel 

addition in the spreader and recombiner magnets 
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N 

fig. II.10: Scheme of the CEBAF indicating the 

positions of the spreaders and recombiners. 

 

 

 

 

 

 

 

 

 

As the magnet is studied here in its extended form, its name is abbreviated in ABH, 

where the letter 'H' denotes the fact that this 'C' magnet is somewhat made an 'H' magnet 

by its being extended. The engineering drawings for the original magnet and its return 

steel respectively bear numbers 22161-0101 and 22161-0002 [8].  

 

 

II I.2.3 - Criteria for the choice 

 

 

The main criteria that has led to the election of the MAB6R magnet is that once 

extended to meet the 12-GeV lattice requirements it will be the magnet with the 

strongest field in the whole lattice (~14kG). It was therefore assumed that any effect of 

the geometrical perturbations that were to be taken into account in this study would be 

magnified by the steel saturation.  

A couple of other arguments added to this choice's interest: 

 - the geometry of this dipole is rather abundant, as more than 30 other dipoles in 

the lattice only differ from it by their current density. Since an evaluation of the 

correlation between current density and the effects of machining defects enters in this 

study, the latter gains in application range.  

 - although quadrupoles are more numerous in the lattice than dipoles (about 

twice as numerous), the number of magnetic field harmonics measurements available 

fig. II.11: A part of the second recombiner drawing, 

locating an MAB6R magnet 
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for them make their study less critical in comparison to the dipoles for which no direct 

harmonic measurement has been realized so far. 

 - the reasonable size of the magnet (some of the arc magnets are about three 

times more voluminous) helps constructing numerical models with reasonable memory 

requirements, which also enhances the calculation time as well as the pace of the study. 

 

II II II..33  --  GGeeoommeettrriiccaall   ssppeeccii ff iiccaattiioonnss  ooff   tthhee  oorriiggiinnaall   ppaarrtt  

 

II I.3.1 - Concern 

 

The first step in the actual study of the effects of geometrical imperfections on the field 

induced by the studied dipole is to get familiar with the specifications applied to the 

latter. Since the 'AB' dipoles haven't been extended into 'ABH' yet, the available data 

are those relative to the original, non-extended dipoles. It is of fundamental importance 

to know what the functional surfaces are, as well as the value of the tolerances that were 

specified for them.  

 

In a dipole magnet, the functional surfaces are obviously the pole tips, where the field 

lines come out of the return steel to cross the beam trajectory and bend it. The pole tips 

are the most tightly specified parts since any variation on a pole tip surface directly 

affects, to an extent that this study is trying to determine, the field seen by the particles 

and the eventual beam quality. 

 

The steel section is very important too since it determines the maximum magnetic flux 

density that the steel can support and when it saturates. That is the reason why it was 

decided that the return steel should be extended for the accelerator upgrade, as 

explained in section II.3.2. However, a conservative design regarding the steel bulk is 

cheap enough and sufficient to eliminate the need for a finer study of the section value. 

 

In the case of the pole tips however, there is no limit to the price that a vendor can ask 

for if the surface quality required is high enough. It is therefore crucial to determine an 

optimum between the field quality that is needed in the dipoles and the surface quality 

for the magnet poles that the laboratory is willing or able to pay for. 

 

The object of this study is the extended 'AB-H' magnet, which differs from the currently 

used 'AB' magnet by its having a thicker return steel section, and thus a higher induced 

field, but is similar to it in every other dimensional extent. 

Let us then examine the specifications that were emitted while designing the current 

'AB' magnet.  

 

Figure II.12 and II.13 show the parts of the core detail drawing where the functional 

surfaces are specified. The full drawing is available in annex [A6].  

Note:  

All dimensions are given in inches, with a ±0.01 in tolerance if their value is given with 

two decimals, ±0.005 in if it is given with three. 

The full length of the core (37.80 in, implicitly ± 0.01 in) was indicated in another view, 

not reported here for it held no functional specification.  

The following representations have been rescaled to fit the page.  
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Fig. II.12: Side view of the core of the 'AB' magnet.  

Note its characteristic 'C' shape. The beam travels through 

the magnet between the two surfaces marked 'POLE TIP 

SURFACES' along a path (treated in section II.3.5.2) that is 

roughly perpendicular to the drawing plane.   

 

 

 

 

II I.3.2 - Tolerances 

 

Local sizes    (see fig. II.12 ) 

 

This specification requires that any measurement of the gap width in a vertical section 

plane of the dipole return a value between 1.018 and 1.022 inches. 

 

 

Flatness    (see fig. II.12) 

 

The specification first names the upper pole simulated datum (theoretical plane 

associated to the real pseudo-planar surface of the pole tip) 'B'.  

Fig. II.13: Front view of the 

core. 
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Then the upper flatness specification requires that the whole surface of the pole tip be 

comprised between two theoretical parallel planes .005 inches far from each other. 

The lower specification adds to the first one another condition, according to which each 

1-in
2
 surface on the pole tip must comply with a 0.001-inch flatness tolerance. This 

helps avoiding local abrupt variations without having to reduce drastically the tolerance 

for the whole surface. 

 

 

 

Profile of a surface   (see fig. II.12) 

 

This specification requires that the specified surface belong to a three-dimensional 

tolerance zone made of two surfaces whose theoretical profile is defined by the datum 

reference (B in this case) and which are distant from each other by the tolerance value 

(.002 in here). Since B is a plane, and after broaching the topic with the engineering 

service, it was concluded that this specification meant that the lower pole tip had to 

belong to a tolerance zone made by two theoretical planes, parallel to each other and 

parallel to B, .002-in apart from each other, which is equivalent to a parallelism 

specification. 

 

 

Straightness  (see fig. II.13) 

 

According to the authors of the drawing (Annex [A6]), the " " indication under the 

two  specifications indicates that the straightness condition applies to the 

centerline of each pole tip (See Fig. II.14), in spite of the mention being made of 

elements  and . 

 

The indications regarding the use of the 

straightness specification found in the 

literature supplied to the student [4] state: " 

Straightness tolerance is typically used as a 

form control of individual surface elements 

such as those on cylindrical or conical 

surfaces. Since surfaces of this kind are 

made up of an infinite number of 

longitudinal elements, a straightness 

requirement applies to the entire surface as controlled in single line elements in the 

direction specified. [...]The straightness tolerance must be less than the size tolerance. " 

Since in this case the size tolerance comes to be tighter than the straightness tolerance, it 

has been accorded that the straightness specification was included in the flatness 

specification. The former will therefore be ignored henceforth.  

 

 

 

Pole tip centerline 

Fig. II.14: Illustration 

of the centerline notion 
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Parallelism   (see fig. II.12) 

 

This specification states that the toleranced surface must fit between two parallel 

theoretical planes, also parallel to the theoretical datum plane 'A', and 0.002 in far from 

each other. 

The vertical faces of the poles are not functional surfaces to the same extent as the pole 

tips for they are expected to be tangent to the field lines and therefore not as influent on 

their action on the beam as the pole tips are. Consequently, this specification will not be 

exploited in this study, which will therefore focus on the effect of pole tips perturbation. 

 

 

 

Surface texture 

 

The surface texture specifications will not be taken into account in this study for the 

following reasons: 

 - the dimensions that surface texture specifications deal with are one order of 

magnitude smaller than the tiniest values used in form specifications. This has a double 

consequence. Firstly, those perturbations are expected to have a smaller effect on the 

field than greater scale ones. Secondly, those dimensions reach the limits of our 

modeling capabilities, so that their being taken into account should be the object of a 

separate study. 

 - surface texture defects are expected to be either noise-like (randomly spread 

over the surface) or periodic (like the mark of milling), in which case the effects of the 

induced local perturbations would cancel each other as the field is integrated over the 

beam path to take the whole dipole effect into account (see sections II.1.1and II.3.5.2). 

 

II II II..44  --  FFiinnddiinngg  aa  ''wwoorrsstt''  mmaacchhiinniinngg  ccaassee  

 

II I.4.1 - Concept 

 

Once considered the specifications that were applied to the dipole and the tolerances 

they expressed, it was decided as explained in the previous section that straightness, 

vertical parallelism and surface-texture specifications would not be exploited in this 

study, which would be focused on the flatness of the upper pole, the profile of the lower 

pole (which was said to be equivalent to its parallelism to the upper pole) and on the 

local sizes that were specified for the gap. 

 

Modeling operations started with the following concern: now that the tolerances on the 

critical parts of the dipole are known, the first question that has to be answered is To 

what extent is the current design allowing the field to be perturbed from its theoretical 

value? 

 

It was then decided to model a dipole that would meet the tolerances, but with a play as 

low as possible - a 'worst machining case' - whose field, once evaluated, would reveal 

the nature and order of magnitude of the field perturbations that are being dealt with. 
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The present section presents the model that was adopted for that function, after a phase 

of experimentation on modeling possibilities and limitation, along with the perturbation 

that were applied to it. 

 

 

II I.4.2 - Presentation of the model 

 

Figure II.15 shows an overview of the geometry of the 

'ABH' model, realized in the Opera modeler according to 

the design specifications for the 'AB' magnet and for its 

steel extension.  

 

Since the perturbation applied to the pole tips are of the 

order of magnitude of the tolerances that were applied to 

those surfaces (i.e. ~10
-3

 in), they are not visible on an 

overview of the magnet. 

 

Specific steel magnetic properties were specified (Fig. 

II.16) for the behavior of the modeled steel to be as close as 

possible to the steel that is actually used to build the 

CEBAF magnets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. II.15: Overview of 

the first perturbed 

model of the ABH 

magnet 

Fig. II.16: B-H curve defining the properties of the steel used in the 

calculations, obtained from measurements on steel taken on a section of steel 

from an ingot used in making CEBAF magnets. 
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II I.4.3 - Perturbations applied 

 

This paragraph deals with the perturbations that were chosen to be applied in this 

model.  

 

Transverse perturbations 

 

Let us consider a transverse plane, perpendicular to the general beam direction, in order 

to discuss the nature, extent and justification of the perturbations that are perceivable 

transversally. 

Figure II.17 gives a schematic representation of the shape of the perturbed pole tips in a 

transverse plane.  

 

Since the parallelism tolerance ( ) is a relative property, it was decided that the 

reference 'B' on the upper pole was going to be modeled horizontally for the parallelism 

defect to be easily managed by the orientation of the lower pole. 

 

This election implies that the upper pole has a transverse flatness default of 0.002 

inches, which is the maximum tolerated since: 

 - it is only 4 inches wide,  

 - the flatness default cannot exceed 0.001 in per inch, 

 - the tangent plane has to be horizontal for the flatness and parallelism defects to 

be treated separately. 

 

The upper pole flatness defect was at that stage modeled by a parabola, since it was 

assumed that this convex shape would favor the divergence of the field lines on the 

sides of the poles, thus magnifying the effect of the tip non-planarity on the field. 

 

 

 

  

Fig. II.17: Schematic representation of the 

pole tips' perturbed shape  

xy
08.5

00254.0

241007996850393701 x.y

Equations of the slope and parabola:  
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The parallelism specification that was applied to the lower pole by means of the profile 

specification ( ) was taken into account by 'tilting' the lower pole tip with a 

precisely defined slope so that its tip can be exactly 0.002 inches non-parallel to the 

upper pole's 'B' reference datum plane: a tangent plane that was made horizontal on 

purpose, as explained before. 

In that configuration, one can verify that the local size specification is verified 

everywhere. 

 

Longitudinal perturbations 

 

In a first step, it was decided that longitudinal perturbations would not be taken into 

account, for modeling reasons. In fact, the vertical symmetry of the model was broken 

by the introduction of the transverse perturbations, which caused the model size, and the 

calculation time thus,  to almost double. Introducing longitudinal perturbations would 

break the longitudinal symmetry, doubling the solver burden once more. Since 

perturbed models took around 15 hours to solve, it was decided that the study would 

start with transversal perturbations only. 

From another point of view, the longitudinal axis is parallel to the machining direction, 

so that most of its defect content is likely to be related with vertical milling marks, 

which was said to be negligible in the surface texture paragraph of the II.3.3.2 section 

on tolerances. 

In the end, longitudinal perturbations are not treated in this study. 

 

II II II..55  --  FFiieelldd  eevvaalluuaattiioonn  mmeetthhoodd  

 

II I.5.1 - Definition of multipoles 

 

Introduction  

 

When an accelerator is constructed, the nominal trajectory of the particle beam is fixed. 

This trajectory may simply be a straight line, as is the case in linear accelerators. In 

circular machines such as the CEBAF in its entirety, however, it has a more complicated 

shape consisting of numerous curves connected by straight sections of various length 

(the spreaders are a good example of that complexity). The beam follows the resulting 

path until it is accelerated to the required extent and is sent to the halls. But on another 

scale, the trajectories of individual particles within the beam always have a certain 

angular divergence and without further measures the particles would eventually hit the 

wall of the vacuum chamber and be lost.  

It is therefore necessary first of all to fix the beam trajectory, in general an arbitrary 

curve and then to repeatedly steer the diverging particles back onto the ideal trajectory. 

The latter, termed the 'orbit', is fixed by the construction of the accelerator, taking 

numerous parameters into account, such as the energy of the particles, a reasonable 

steering radius for them given the field strength that can be reached by the magnets and 

the desired/available size for the accelerator facility... In most general terms, the 

steering is done by means of electromagnetic fields (E
d

andB
d

) in which particles of 

charge e and velocityv
d

 v experience the Lorentz force: 

 

 

 (2) )( BvEeF
dddd
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At relativistic velocities, the effect of magnetic fields is so strong compared to the effect 

of technically achievable electric fields that those are mostly employed at very low 

energies.  

 

 

Decomposition around the ideal trajectory 

 

To describe the motion of a particle in the vicinity of the nominal trajectory, the 

laboratory frame is not the most appropriate, given the smallness of the beam transverse 

dimension compared to the radius of curvature of the trajectory. Instead, a local 

Cartesian coordinate system K = (x,y,s) whose origin moves along the trajectory of the 

beam is used (Fig. II.18). 

 

 

 

 

 

 

 

 

 

The axis along the beam direction is s, while the horizontal and vertical axes are labeled 

x and y respectively. For simplicity we will assume that the particles move essentially 

parallel to the s-direction, i.e. v = (0,0,vs), and that the magnetic field only has 

transverse components and so has the form B = (Bx, By, 0). For a particle moving in the 

horizontal plane, through the magnetic field there is then a balance between the Lorentz 

force Fx = -evsBy and the centrifugal force Fr = mvs
2
/R. Here m is the particle mass and 

R is the radius of curvature of the trajectory. Using p = mvs, this balance of forces leads 

directly to the relation: 

 

 

 (3) 

 

 

 

There is a corresponding expression for the vertical deflection. Since the transverse 

dimensions of the beam are small compared to the radius of curvature of the particle 

trajectory, we may expand the magnetic field in the vicinity of the nominal trajectory: 

 

 

 

 (4) 

 

 

beam direction 

y 

s x 

Fig. II.18: Coordinate system to 

describe the motion of particles in the 

vicinity of the nominal trajectory 
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Multiplying by e/p: 

 

 

 

 

 

 

 

 

 

The magnetic field around the beam may therefore be regarded as a sum of terms, called 

multipoles, each of which has a different effect on the path of the particles. 

 

 

Interpretation 

 

The notion of multipoles is of fundamental importance in order to understand the results 

of the present study, since most of its conclusions will deal with the extent of a 

multipole's contribution in the field. This notion has a variety of interpretations, and one 

should not simply stick to the representation in terms of a mathematical expansion. 

From this perspective, one should however keep in mind two concepts: 

 

 - the behavior of the field components with respect to the distance from the ideal 

beam trajectory, which is a constant for the dipole, a linear slope for the quadrupole, a 

square dependence for the sextupole... 

 - the linear nature of a sum which confers intrinsic independence to the different 

components of the magnetic field 

 

The different names that are given to the terms of the expansion clearly come from the 

homonym magnets. In the case of a dipole magnet like the ABH for example, the field 

lines are straight and parallel between the poles (disregarding edge effects) which means 

that their density - the magnetic flux density 'B' - is constant, as the dipole term in the 

expansion was. In a quadrupole magnet, the field lines have the shape indicated in 

figure II.19. One sees that they get closer and closer to each other as the distance from 

the center raises, and this density growth is actually linear, as was seen in the 

'quadrupole' term of the mathematical expansion of the field.  
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Fig. II.20: Illustration of the field 

measurement using a rotating coil 

This correspondence between mathematical and physical tools is the basic concept that 

enables accelerator physicists to build the lattice, the sequence of magnets which 

constitutes the accelerator along with their set points, so that each mathematical 

component of the field seen by the particles along the beam path can be managed with a 

real and concrete magnet type.  

 

 

II I.5.2 - Measuring multipoles 

 

Introduction 

 

As was mentioned in the previous section, the field multipoles have a relatively wide set 

of interpretation perspectives. In order to understand the way they are measured, treated 

and compared in this study it is necessary to get acquainted with the cylindrical 

representation of multipoles.  

 

The mathematical expansion presented in section II.3.5.1 was expressed in a Cartesian 

coordinate system and the distance from the nominal trajectory was expressed in terms 

of the abscissa along the horizontal axis x. However, the smallness of the beam 

transverse dimensions compared to the radius of curvature of the trajectory is respected 

in every direction normal to the trajectory, which confers to the system a cylindrical 

complexion that is better described in polar coordinates. 

 

The measurement and diagnosis of multipoles underwent 

somewhat of a revolution around 1965 when J. Cobb and 

R. Cole used a fast rotating coil to measure quadrupoles at 

SLAC (Stanford Linear Accelerator Center) in California 

[5]. The idea is based on the description of magnetic 

fields in terms of their Fourier harmonic expansion. 

Picture a coil (Fig. II.20) rotating with constant angular 

velocity. One side of the coil is placed colinear with the 

axis of the magnet, the other side sweeps out a circle of 

constant radius. The voltage seen on an oscilloscope is 

proportional to the rate of flux cut by the coil. If the 

magnet is perfect, a perfect sine  or cosine wave should be 

seen at a frequency equal to the revolution frequency for a 

dipole, twice the revolution frequency for a quadrupole, etc.  

 

The field expansion in cylindrical coordinates is generally expressed: 

 

 

 

 (5) 

 

 

 

 

 (6) 
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With the following correspondence: 

 

 

 

 

 

 

 

 

Field evaluation in simulations 

 

The numerical code used in this study [1] to model the dipoles and compute their field 

has a feature that allows to measure the quality of the field induced by modeled magnets 

in a way that is very similar to the rotating coil technique, so that it is possible to 

compare the results of calculations with measured data when available. 

 

In the real measurements that are made at Jlab, the coil is rotated around the beam path 

as described in the previous paragraph and then moved longitudinally to measure the 

field along the beam trajectory. As the quantity measured is the amount of flux cut by 

the coil, all the harmonics are summed and cannot be measured independently. More 

advanced devices are able to separate the harmonics via a set of multiple dedicated 

coils. 

 

In the simulated models, the field is evaluated along a circle in a plane normal to the 

beam trajectory (Fig. II.21). The circle is then displaced along a trajectory that follows 

the expected beam path - e.g. a circular path within the bending dipole field - and the 

field is evaluated at each step. A Fourier fit is computed from the circular field 

evaluation along each circle, simulating the values that would be measured for the field 

multipoles using rotating coils in a real magnet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  n = 1 Dipole 

 n = 2 Quadrupole 

 n = 3 Sextupole 

 n = 4 Octupole 

 n = 5 Decapole 

 n = 6 Dodecapole or 12 pole 
 

Fig. II.21: Representation of the 1-cm circle around 

which the fields are evaluated in the simulated models 
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The script used to generate the circles along the beam path can be found in annex [A3]. 

The file that is being presented has been shortened for paper economy reasons and only 

presents the first 5 cm and the last 5 cm of the 75cm-long defined trajectory.  

The actual coordinates of the points defining the circles as well as the harmonic values 

from the Fourier fit applied to the fields evaluated on the circles are given in annex 

[A1]. 

 

As mentioned in section II.3.1.1 - Software resources, the format in which the 

harmonics are presented in the post processor output file [A1] is quite incompatible with 

the syntax required for treatment with a spreadsheet editor such as those used in this 

study [2] [3]. A Perl script, given in annex [A2], was therefore edited by the student to 

generate a double-entry array presenting the value of each harmonic on each circle all 

along the beam path.  

 

The circles used to evaluate the 'ABH' magnet models have a radius of 1 cm. This value 

has been decided upon according to several criteria: 

 

 1) The radius cannot be much larger for the magnet poles are only 1.295 cm 

away from the beam trajectory (and thus from the center of the circle) and a circle 

evaluating fields too close to the poles would see its evaluation accuracy reduced due to 

irregularities in the mesh inherent to a change of medium. 

 

 2) Since the fields around the circle are evaluated by nodal interpolation, the 

perimeter of the circle has to be sufficient for the number of finite elements available for 

the interpolation along the circle to satisfy the sampling theorem.  

The Nyquist-Shannon sampling theorem states that: 

 

"If a function f(t) contains no frequencies higher than W cps* , it is completely 

determined by giving its ordinates at a series of points spaced 1/(2W) seconds apart." 

 

*: Cycles per second - modern unit is Hertz (Hz) 

 

Here the application of this theorem is geometrical instead of temporal: since we are 

evaluating cyclic functions around a circle, W won't be expressed in terms of cycles per 

second but in terms of cycles per perimeter of the circle. Since the multipoles are 

evaluated up to the 20-pole (which is then the one with higher frequency), W here is 10 

cycles per perimeter. For a 1-cm radius circle, the perimeter length is about 63 mm. 

Therefore, the field has to be evaluated at least every each 1/(2W)*63 mm = 3.15 mm. 

Since in the models studied the mesh size is 2.5 mm in the gap, the sampling theorem is 

verified with a 1-cm radius circle. 

 

 3) Equations (5) and (6) show that each 2n-pole term is proportional to r
n-1

 so 

that even evaluations made with a large circle can eventually lead to an evaluation at a 

beam-radius scale.  
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II I.5.3 - On skew multipoles 

  

Before the research proceeding goes on with the presentation of the first results in the 

next section, a few precisions about field multipoles should be considered in order to 

clearly understand those results. 

 

We have seen in the previous section that the field induced by a perfect 2n-pole magnet 

could be described as a theoretical say, cosine wave. Basic notions of trigonometry tell 

us that a rotation of ˊ/2n of the coordinate system implies that a term be expressed with 

a sine if it had a cosine and vice versa. This has a very important repercussion on the 

practical field for it implies that the field of a perfect 2n-pole magnet can be described 

by, say, a sine wave in only one coordinate system or in other words, that in a given 

coordinate system, we generally need both sine term and cosine term to describe the 

field content at any given order n because of the angular degree of freedom around the 

longitudinal axis.  

 

In reality, magnets are never perfectly vertical or perfectly horizontal. There is always a 

component of the field that is not aligned with the reference, intrinsic to the magnet mis-

orientation. Moreover, as the fields induced by the magnets are never quite perfect, even 

in their own coordinate system, the terms representing 'tilted' content - which are called 

the skew terms - help the accelerator scientists to describe unwanted components of the 

magnetic field. 

 

  

  

Fig. II.22: Field evaluation around a 1-cm radius circle situated in the center 

of an unperturbed model of the 'ABH' Dipole. One can clearly see the 

cosinusoidal shape that was mentioned in the introduction of this section.  
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II VV  --  RReessuull ttss  

 

IIVV..11  --  EEff ffeecctt  ooff   tthhee  iinnttrroodduuccttiioonn  ooff   aa  ppeerrttuurrbbaattiioonn  

 

The goal of this section is to obtain a first look at the effect that the introduction of a 

geometrical perturbation in the numerical model of the studied dipole has on its field. 

For this purpose, the 'Worst Machining Case' (WMC) model, defined in section II.3.4, 

will first be compared to the original, non-perturbed model that is currently being used 

to simulate the 'ABH' magnet in the accelerator simulations (cf. II.1.1).  

 

 

IV .1.1 - Presentation of the original model 

 

From now on, the models will be described in a coordinate system in which the origin is 

placed in the center of the gap (equal distance from the pole tips and from their 

borders), z is the longitudinal axis and x and y the transverse directions respectively 

parallel and normal to the pole tips. 

 

As section II.3.2 explained in details, the 'ABH' magnet is a 'C' shaped magnet that was 

extended to a pseudo 'H' shape to support superior magnetic flux density. Since the 

model being used currently to simulate the field that is induced by this magnet is not 

perturbed, the steel geometry in it has two planes of symmetry: the z = 0 and y = 0 

planes. Consequently and for computation time reasons, the model that is really being 

solved in non-perturbed calculations only includes the {z > 0, y > 0} quarter of the steel. 

Figure II.23 presents this model along with another one that includes the whole 

geometry but which is never used for calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the perturbed WMC model, only the symmetry with respect to the z = 0 plane is 

conserved since the poles are not perturbed equally. 

 

 

IV .1.2 - Analysis of the perturbed model  

 

The multipole terms of the field expansion (II.3.5) increase with the distance r from the 

beam orbit with an order r
n-1

. Since the beam transverse dimension is small compared to 

the magnet gap, with core Gaussian under 0.6 mm sigma throughout [6], the orders for 

Fig. II.23: Two models including: the full geometry of the steel (left), only 

one quarter (Right) 
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n > 2 will be neglected for now in front of the two first terms. Since the dipole skew 

term is null and its normal (not skew) term is easily taken into account in real 

measurements given its direct effect on the beam trajectory, only the quadrupole term is 

going to be taken into account at first.  

 

Observations 

 

Figure II.24 and II.25 show respectively the cosine and sine term of the quadrupole 

harmonic of the field that is 'seen' by the beam along its trajectory in the magnet.  

 

 

 

As was explained in the paragraph introducing the coordinate system, the origin is 

situated in the center of the gap and z is the longitudinal axis. Since the models present a 

symmetry with respect to the z = 0 plane, only the z > 0 part of the graphics is presented, 

the other part being identical and in the opposite direction. 

The steel body of the magnet ends at z = 48.006 cm (37.8 in). 

Fig. II.24: Cosine quadrupole term evaluated along the beam path in both the 'Worst Machining Case' model 

and the original non-perturbed model. 
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One can see a slight offset in the cosine term value while the beam is still between the 

poles, but since the tendency is not modified and the lattice is equipped with numerous 

normal 'cosine oriented' quadrupole magnets, this effect is easy enough to correct for 

this study not to focus on it. 

 

 

 

 

Several interesting phenomena are observed here. While the non-perturbed model had 

all its skew terms artificially set to 0 for the magnet mid-plane (y = 0) was a boundary 

for the model (and thus the boundary condition stated that the field lines had to be 

normal to the mid-plane), the perturbed model, in which this symmetry is broken, 

shows: 

 - a constant body term of several Gauss 

 - a peak at the end of the steel, one order of magnitude higher than the body 

value 

 

Fig. II.25: Sine quadrupole term evaluated along the beam path in both the WMC model and the original non-

perturbed model 
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Comments 

 

As was explained before, the lattice is supplied with numerous normal quadrupole 

magnets, so that the normal quadrupole perturbation is not much of a problem for it can 

be corrected easily. On the other hand, skew quadrupole magnets are rare and most of 

them are situated in the linacs, already set to compensate for the skew terms introduced 

by the imperfect superconducting RF cavities. There are only two skew quadrupoles in 

the CEBAF outside the linacs, in the eighth and ninth spreaders.  These are used to 

compensate for all the accumulated error outside the linacs, which represents an 

equivalent of over 600 cumulated meters of dipole length before the ninth spreader.  

They are set to reduce x-y coupling to the part per thousand level in the succeeding arc.  

Typical values are 500-800 G - which is roughly equivalent to 1 Gauss per meter of 

dipole. Dipole values are about 40% of those considered in this work (see section 

II.4.2), so 2.5 G per meter of dipole would be typical in the upgrade if disassembling the 

dipoles to modify the coils and reassembling with H steel do not alter performance.   

 

 

First normal multipoles are useful: dipoles are used to steer the beam, and quadrupoles 

to focus it for example. But skew multipole terms play an important role in beam 

deterioration throughout the accelerator. At 6 GeV the distribution of the particles in the 

beam transverse dimension is Gaussian and the beam diameter is easily kept under 

0.2mm sigma (core Gaussian) [6] throughout.  Halo with a quadratic (not Gaussian) 

transverse profile is sometimes introduced accidentally in the injector and interacts with 

higher multipoles throughout the machine.  As the energy raises (the upgrade purpose is 

to double it), the synchrotron radiation becomes significant in the arcs and to the initial 

distribution is added a halo even without injector error.  Again, this halo is a 

quadratically-distributed noise zone around the Gaussian that increases the beam 

transverse dimension. As was seen many times before, multipole terms get higher with 

the distance from the center of the beam and as the beam transverse dimension 

increases, so does its sensitivity to multipole effects. Beam section increase and 

sensitivity to skew multipole content are two parasite phenomena which favor each 

other.  

Since there are hundreds of dipoles in the lattice, their introducing a hitherto neglected 

skew term must be studied in details.  

 

Proposal 

 

At this point of the study, it appears clearly that modeling the magnets using only a 

quarter of the steel for symmetry reasons was too bold an assumption. However, we 

don't know yet to what extent the skew terms observed in the perturbed model are due 

to full -height steel modeling or to the actual perturbation.  

 

The next step should therefore be to compare our perturbed model to an unperturbed 

model comprising the full height of the steel, thus getting rid of the boundary condition 

that zeroed all skew content of the field in the previous simulation. 
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IV.1.3 - Comparison with a full -height, non-perturbed model 

 

Figure II.26 shows how the full height of the steel is comprised in the non-perturbed 

model that is going to be used henceforth, while the longitudinal symmetry that allows 

us to keep calculation time reasonable is still conserved. Quarter-steel models took 

roughly half the time half-steel models take to solve, which means that the calculation 

time passed from around 6-7 hours to around 15 hours. One should keep in mind that 

each of the simulations presented in this study is the result of several hours of modeling 

and meshing in the case of perturbed models, plus one night of calculation on a general 

basis. 

 

 

 
 

One can observe on figure II.27 that: 

 - the ~3 Gauss shift in the zone between the poles is conserved 

 - the unperturbed model now shows a bunch of peaks in the pole edge 

whereabouts 

 

 

Interpretation 

 

Although the end of the pole tips are likely to have an influence on the field, the high 

frequency peak shape that is observed is very unlikely to have any physical relevance. 

These oscillations are more probably caused by the insufficient mesh density outside the 

gap zone. While the finite element size is 2.5 mm in the gap, it changes to 5 mm when 

the beam gets out of the magnet. Although this edge effect is interesting, the study will 

first focus on the body field whose calculation is more reliable for now (cf. II.3.5.2). 

  

Fig. II.26: 3D representation of the two unperturbed models, respectively assuming a double symmetry 

(left), or only one longitudinal symmetry (right). 
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Proposal 

 

After the influence of the perturbation is confirmed by the comparison with  other 

models, perturbed to the same extent but with different shapes, the study should focus 

on the determination of the correlation between the amplitude of the perturbation and 

the extent of the skew quadrupole term. In reality, the magnets will probably not have 

exactly the non-planarity that has been assumed in the WMC model. It would therefore 

be interesting to be able to evaluate the field defect that is to be expected from a given 

planarity of the pole tips. 

 

 

Fig. II.27: Skew quadrupole term evaluated along the beam path in both the WMC model and the full -height non-

perturbed model 
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IV .1.4 - Comparison with other perturbed models 

 

Presentation of the other perturbed models 

 

 

Figure II.28 presents the shapes that were used to perturb the Test1 and Test2 models. 

They were mostly chosen to test asymmetric and non-linear shapes, without taking into 

account their being realistic or not for the moment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. II.28: Presentation of the two 

additional perturbed models that 

were used to verify the apparition 

of a skew term in the zone between 

the poles. 

  

Original Model : Parallel planar poles 
Test1 : Parabolic convex upper pole,  
 cosinusoidal lower pole 
Test2 : Parabolic convex upper pole,  
 sinusoidal lower pole (1/2 period) 
WMC : Parabolic convex upper pole,  
 tilted planar lower pole 
 

Test2 

Test1 
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Observations 

 

Figure II.29 shows that a skew term is observed in each model and that they all have 

very similar values, although the sign is opposed in Test1. 

 

 
 

 

 

Conclusions 

 

It is now confirmed that the geometrical perturbation of the poles creates a skew 

quadrupole term in the gap of the dipoles. Its sign seems to be related to the relative 

symmetry of the perturbations.  

 

The arguments that led to decide upon a convex parabola and a tilt for the WMC model 

were more mathematical than practical: 

 - the convex shape was assumed to favor the divergence of the field lines  

 - the tilt was intended to introduce asymmetry and it represented the non-

parallelism of the poles.  

 

Although the pole tips are indeed very likely to be somewhat non-parallel in reality, the 

convex shapes that those models present are very unrealistic on the contrary. 

When a surface is milled vertically, the two main causes for shape defects are the 

orientation of your mill and the quality of the guiding. Since the latter only has a 

longitudinal effect that is not taken into account in the present study, let us focus on the 

former: 

 - if the mill is tilted with respect to the longitudinal axis, the machined surface, 

as planar as it may be, will end up being tilted by the same amount 

 - if the mill is tilted with respect to the transverse axis, the machined surface will 

be a concave ellipse instead of a plane 

 

Fig. II.29: Skew Quad term over the length of the pole tips for the 

full-height perfect model and for three different perturbed models. 
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Since the apparition of a tilt or an ellipse instead of a plane is independent from the sign 

of the mill orientation defect, one can conclude that those form defects are always going 

to be present on the pole tips, to some extent. 

 

 

Proposal 

 

Now that the influence of geometrical perturbations has been qualitatively established, 

the next step in the research progress will be to determine quantitatively the correlation 

between the amplitude of the geometrical perturbation and the amplitude of the induced 

field perturbation. 

A model presenting a concave ellipse and a tilt should be used for this purpose. 

 

 

IIVV..22  --  EEff ffeecctt  ooff   FFiieelldd  IInntteennssii ttyy  

 

Before the research process goes on with the quantitative study of the influence of 

geometrical perturbations on the field, a parallel study whose purpose is to verify an 

initial assumption will be presented. 

 

Initial assumption  

 

As section II.3.2.3 stated, the 'ABH' magnet was chosen for this study because it was 

going to induce the strongest dipole field in the 12GeV-set lattice (~14kG). It was 

assumed that the steel saturation occurring at those fields would favor field defects and 

make the study more easily readable.  

 

Verification process 

 

To verify this assumption, it was decided that the initial perturbed model would be 

solved using different current densities in order to see the tendency of the field 

perturbation with respect to steel saturation. Since the magnet is never going to be used 

with higher current than its 12-GeV nominal current I, it was decided that the model 

would be solved for the following values of the current: .25I, .375I, .5I, .625I, .75I, 

.875I, I (already solved). 

Figure II.30 presents the results of these calculations. A unique value that would 

represent accurately the field in the gap of each model was needed. Since the previous 

section showed that the quadrupole term of the field was rather constant far from the 

edges, an average of the skew quadrupole term of the field was computed for each 

model over the z = 0 to z = 20 cm portion of the beam trajectory. 

With an average around 15 h of calculation time for each model, solving them all took a 

little more than 100 h. 
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Observations 

 

 
 

It can be observed that as one would expect  the value of the field increases with the 

current intensity , but the skew quadrupole seems to be attenuated as the current raises 

which would undermine the hypothesis according to which steel saturation would favor 

field perturbation. To see better the influence of perturbation on the skew quadrupole 

content, the average skew quadrupole has been normalized by dividing it by the average 

normal dipole term of the field (calculated between z = 0 to z = 20 cm too). The plot is 

presented in figure II.31 with two different vertical scales.  

 

 
 

Fig. II.31: Average skew multipole term of the field divided by the average normal dipole term in the center of 

the magnet gap versus normalized current density 

Fig. II.30: Average skew quadrupole term of the field in the center of the WMC model for different values 

of the current density in the coils 
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One can see clearly that the relative importance of the skew multipole term with respect 

to the functional steering field decreases as saturation raises.  

 

 

Interpretation 

 

This decrease of the relative importance of the skew multipole means that as the magnet 

is used with higher and higher currents, it becomes relatively less sensitive to the 

geometrical defects of its poles.  

This can be interpreted considering the nature of the saturation phenomenon. As the 

current augments in the coils, the magnetic field induced in the steel grows. This means 

that the magnetic flux density increases, that the density of field lines guided by the 

steel increases. When the steel starts to saturate, its permeability decreases and it admits 

less and less additional field lines. Since the flux generated by the coils raises anyway, 

the field lines start to be driven by the air instead of being sucked by the steel. The 

magnet starts to be less and less 'iron-dominated'.  

As the air drives more and more flux compared to the steel, its influence on the field 

shape gets more and more important. Since geometrical perturbations of the pole tips 

only affect the field lines that are driven by the steel, one can understand the decrease of 

their relative influence with the decrease of the relative influence of the steel on the 

field shape. 

 

Conclusion  

 

The initial assumption regarding the help that steel saturation would provide in studying 

the influence of geometrical perturbations was wrong, as its effect is actually to lower 

their influence. However, since this effect is limited to ~20% of the studied value (Fig. 

II.31) and since this saturation influence verification was being undertaken in parallel to 

the rest of the perturbation studies, it was decided that the studies should keep using the 

ABH magnet. One can later translate the results to weaker magnets using the established 

curves. 
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IIVV..33  --  QQuuaannttii ttaattiivvee  iinnff lluueennccee  ooff   ggeeoommeettrriiccaall   ppeerrttuurrbbaattiioonnss  

 

The purpose of this section will be to look for an exploitable correlation between the 

amplitude of the geometrical perturbations and their expected effect on the field 

components. 

 

IV.3.1 - Models used  

 

Presentation 

 

As section II.4.1 explained the convex shapes that have been used to model the 

perturbations until now are not realistic. As a consequence, the models that are going to 

be used from now on will have perturbations whose shape can logically be expected 

from machining defects. It was established that, to some extent, any milled surface is 

tilted and presents a concave elliptic shape. This is therefore the way in which 

perturbations will be modeled. However, and although each pole tip should present both 

a tilt and an concave elliptic shape, those defects will be separated in order to be able to 

quantify their amount more clearly. This separation will be done artificially by using 

models that present a concave elliptic upper pole, and a planar tilted lower pole. 

 

The first model created that way was intended to be an equivalent of the WMC model in 

the way that it was modeled to fulfill the tolerances with a play as low as possible. 

Nevertheless, since the objective was not to match the tolerances anymore but to make a 

model that could be easily modified to study different values for the perturbation, this 

model was dimensioned with metric units, having a perturbation amplitude of 50 

microns, versus 0.002 in for the WMC model. The 0.002 in value came from the 

drawings edited by the engineers, who use the U.S. customary unit system on a general 

basis, and the 50 microns value was intended to be a starting point for a set of 

simulations with different perturbation amplitudes that would be realized in a metric 

system scientific environment (numerical codes, internal communication...). 

 

Figures II.32 and II.33 respectively present the new elliptic and tilted model and the 

WMC model, for comparison. 
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Fig. II.33: Dimensional specifications of the 

'Worst Machining Case that was introduced 

in section II.3.4.  
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Comparison of their field 

 

Figure II.34 presents a plot of the skew quadrupole of the field induced by both the 

WMC and the P = 50 microns elliptic model. Several interesting points are to be 

noticed: 

 - the amounts of skew quadrupole induced by both models are very similar, 

which is quite reinsuring about the assumption that there could be a correlation between 

the amplitude of the geometric perturbation and the amplitude of defect in the field 

 - the quadrupole field induced by the P = 50 model has a slightly lower in 

absolute value, which is consistent with its having a slightly lower perturbation (50 

microns versus 50.8 for the WMC model) 

 - the quadrupole fields induced by the two models have opposite signs. This is 

probably the effect of having a concave form instead of convex. Firstly, the purpose of 

this section is again to study quantitatively the influence of the perturbation amplitude, 

so a greater importance will be given to the amplitude of the field than to its sign. Of 

course and although it is very unlikely, if the latter were to change with the perturbation 

amplitude, this would be considered with great care. Secondly, we have seen that a 

concave shape is far more realistic than a convex one so the sign of the field induced by 

the elliptic model is more likely to have physical meaning. 

 
 

 

 

IV .3.2 - Multipoles behavior 

 

After having calibrated the parameterized model, it was decided that it would be solved 

for different values of its parameter. Since the future magnets are a priori not expected 

to be designed with looser tolerances than the current magnets, the range for the 

variation of the parameter P was going to be 0 - 50 microns (Fig. II.35). 

 

Fig. II.34: The skew quadrupole induced by the two compared models along the length of the dipole. 
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One can observe that the value of the quadrupole field increases with the value of the 

geometrical perturbation which confirms a dependence. The next step is to determine 

the character of this dependence. To be able to plot the intensity of the field induced by 

the modeled magnets in function of their perturbation parameter, one needs a value that 

would represent the extent of the multipole content of the field for a given magnet. The 

integrated field along the beam path is widely used for that purpose. This integral: 

 

 

 

 (7) 

 

 

 

 

 

can be calculated for each multipole harmonic of the field independently, by linear 

property of the integral. In this case it is calculated numerically (with a finite step) using 

the table of evaluated fields generated by the script which evaluates the multipoles 

(II.3.5.2) [A3]. Each integral is however normalized by dividing the multipole value by 

Fig. II.35: Skew quadrupole field induced by the perturbed 

models for P = 0, 5, 10, 17, 25 and 50 microns 

beampath

ldB
dd
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the normal dipole term (the principal field that bends the beam) so that one can see 

clearly the relative importance of a given term with respect to the ambient field. At first, 

the integrals will be computed over the portion of the beam path that corresponds to the 

gap between the poles (90 cm of the beam path, centered on the origin), for it was said 

that the study of the edges' contribution would come later. 

 

 

 
 

 

Since this is a quantitative approach, higher order multipoles have been considered, to 

discover whether their content can be a significant perturbation for the particle beam.  

The linear tendency seems established for the quadrupole term. It is not as clear for the 

sextupole and rather bold for the octupole term. It should however be noted that the 

values for the those fields are extremely low, and 1 ppm of a 14kG field that has been 

integrated over a ~100cm magnet only represents an ambient value of ~14mG/cm. 

It has been established [7] that the finite element numerical code that is used to realize 

those calculations present a noise in its field values, mainly due to meshing issues, that 

Fig. II.36: Skew quadrupole, sextupole and 

octupole terms integrated over the length of 

the body of the magnet. Units are parts per 

million of the normal dipole field. Linear fits 

have been associated with the plots.  
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is around 50 mG in amplitude, that's to say around 4 ppm. That renders the graphs for 

sextupole and octupole terms not conclusive.  

 

Since the variation of quadrupole and sextupole seem monotonic, a way of trying to 

determine a variation tendency for those terms anyway is to expand the range of 

variation of the geometrical parameter P so that a fit can be computed with higher 

values of the field, and then extrapolated to lower values of the geometrical perturbation 

(Fig. II.35).  

 

 

  

 

Given the accuracy of the fits, all three multipoles will be considered to have a linear 

dependence on the perturbation amplitude. Between figures II.36 and II.37, skew 

quadrupole and sextupole calculations are even consistent at the few percent level. 

Now that the behavior of the field within the body is better understood, it shall be 

compared to the field that is seen near the edges of the poles, to ponder its relative 

Fig. II.37: Skew quadrupole, sextupole and 

octupole terms integrated over the length of 

the body of the magnet for P = 0, 5, 10, 17, 

25, 50, 100, 250 and 1000 microns. Error 

bars represent local numerical noise. 

Uncertainty on plotted values is much lower 

though, since these are integrated fields on a 

large part of the body (90 cm) and the noise 

is likely to cancel through this operation. 
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importance in the total integrated field seen by the beam as it travels through the whole 

magnet.  

 

 

IV .3.3 - Relative importance of body and edge fields 

 

Obtaining an accurate calculation of the field value near the edges of the poles is a 

difficult task on which  Jefferson Lab scientists are still working. However, once refined 

the finite element mesh in that region, the values obtained were accurate enough to 

allow this study to go on and reach meaningful conclusions.  
 

 

The quadrupole body term is obviously dominating the edges' field and imposes the 

tendency (fig. II.38). The integrated octupole over the whole model is very far from the 

body term. Its oscillations as the geometrical perturbation increases are very unlikely to 

have any physical meaning and this whole set of value is probably composed mainly of 

numerical noise.  

Fig. II.38: Comparison, for quadrupole, 

sextupole and octupole, of the integration over 

the inner part of the dipole (from z = -45 cm to 

z = 45 cm) with the integration over the whole 

length of the simulated trajectory (from z = -75 

cm to z = 75 cm). The latter gets to zones 

where the field gets low enough to consider 

that the total influence of the magnet has been 

taken into account. 
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The relation between the sextupole field integrated in the body and its integration over 

the whole model seems a bit stronger for high values of the perturbation, although the 

oscillation observable at low values clearly indicate that our uncertainty is too high to 

establish a relation.  

 

 

Conclusions 

 

The integrated field over the body has a linear behavior with respect to the amplitude of 

the geometrical perturbation of the pole tips for quadrupole, sextupole and octupole.  

However, after comparison with the integrated fields over the total length of the 

considered beam trajectory, it appears that a clear dominance of the body term is only 

established for the quadrupole term, since the influence of numerical noise becomes too 

strong when it comes to the study of higher terms, which are much lower fields. 
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VV  --  GGeenneerr aall   ccoonncclluussiioonnss    

 

This section presents the final conclusions that the student's work, along with his 

supervisor's productive coaching led to. 

 

1. The perturbation modeling technique is valid in the body of the magnet.   

2. Skew quadrupole and sextupole calculated tendencies are consistent at the few 

percent level over a variation of a factor of 20 in their evaluation domain.  

3. Skew terms at the end of the steel, where perturbations terminate, are more difficult 

to model.  Ten variations of end mesh have been tried.  One was found which did 

not increase the number of elements unduly and provided more physical results than 

those shown above.  Unfortunately, time did not permit the work presented to be 

redone with the better mesh outside the steel.  The results shown here which include 

the ends of the magnets are unfortunately not meaningful except to inform further 

development of magnet models.   

4. However, since the geometrical perturbation only affects the steel, the integrated 

skew term outside of it should be close to zero, as it is in the non-perturbed models. 

Use only of the terms calculated in the body of the dipole is therefore reasonable.   

5. Skew terms are ~20% larger in magnets in which the steel remains in the linear 

regime than in magnets approaching saturation.   

6. Skew quadrupole predicted for 50 micron perturbation and 6 kG  field (current 

specifications for the magnets) is two orders of magnitude higher than the ~1 G per 

meter of dipole seen in present CEBAF with beam.  There cannot be a systematic 

machining or assembly error.  Errors must be random and cancel in large part OR 

the vendor must have performed far better than specification, or both.  

7. Skew sextupole at the level predicted would likely be seen in beam shape in the 

halls and isn't.  Whether it is suppressed by one or two orders of magnitude for the 

same reasons as the skew quadrupole can't be determined by data available.   

8. Skew terms in individual magnets immediately prior to a critical region, for instance 

the Compton polarimeter chicane dipoles, should be held to tight tolerance because 

there's no way to "average out" the random errors over short distances.   

9. The 12 GeV project team must examine this work to determine whether they wish to 

tighten the tolerance on machining of new dipoles or to gamble that the vendor 

chosen will do as well as did the one who did the work in the early 1990's.  Given 

the large cost to tighten tolerance on the sixty or so dipoles to be purchased, perhaps 

a modest incentive clause in the dipole contracts and dedicated skew correction 

elements in the hall transport lines are a good strategy.   

10. Extreme care must be taken in disassembly and reassembly of the existing dipoles 

with H steel to ensure no systematic error is created.   

11. Direct measurement of normal and skew terms through at least sextupole and 

perhaps decapole is desirable so magnets can be sorted to cancel skew terms locally.   
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VVII   --  RReeffeerr eenncceess,,  bbiibbll iiooggrr aapphhyy  aanndd  aannnneexxeess    
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[1]: Opera Version 12.009 Professional Edition x64, Vector Fields Ltd, 24 Bankside, 
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http://www.vectorfields.com 

 

[2]: Microsoft® Office Excel® 2007 (12.0.6214.1000) SP1 MSO (12.0.6213.1000), 

Part of Microsoft Office Professional Plus 2007, © 2006 Microsoft Corporation. All 

rights reserved. 
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Software 
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VVII..33  --  LLiisstt  ooff   AAnnnneexxeess  

 

[A1] : An example of a post processor output file 

[A2] : The Perl script used to convert the post processor output file into a 

suitable format for spreadsheet exploitation 

[A3] : The script used to generate the circles along the beam path in the 

post processor 

[A4] : An example of a calculation report emitted by the code 
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Annex [A1] 

 
Opera - 3d Post - Processor Version 12.009   started on 25/May/2008 at 19:50:15  
Copyright (c) 1984 - 2007, Vector Fields Limited, Oxford, UK.  
Node: CASNRUIZ. Processor: EM64T/x64. System: Windows XP Professional x64 Edition 
(S ervice Pack 2)  
Command language initialisation.  
Unit of Length           : CM  
Unit of Magn Flux Den    : GAUSS  
Unit of Magnetic Field   : OERSTED  
Unit of Magn Scalar Pot  : OCM  
Unit of Magn Vector Pot  : GCM  
Unit of Conductivity     : SCM  
Unit of Current density  : ACM2  
Unit of Power            : WATT  
Unit of Force            : NEWTON  
Unit of Energy           : JOULE  
Unit of Electric Field   : VCM  
Unit of Elec Flux Den    : CCM2  
Unit of Mass             : GRAMME  
Information: opera.comi was not found in the  local or home directory  
*** CONTROL COMMAND ** $COMI  
**** COMMAND INPUT ***  
**** COMMAND INPUT *** ACTIVATE FILE='C: \ Documents and Settings \ nruiz \ My 
Documents \ TOSCA\ Spoiling \ abh_jb14kG \ extending models \ 2x100 -
micron_elliptic_vs_tilt \ 2x100 - micron_elliptic_v s_tilt_extended_minus8cm.op3'  
Opening file for checking: C: \ Documents and Settings \ nruiz \ My 
Documents \ TOSCA\ Spoiling \ abh_jb14kG \ extending models \ 2x100 -
micron_elliptic_vs_tilt \ 2x100 - micron_elliptic_vs_tilt_extended_minus8cm.op3  
**** COMMAND INPUT *** LOAD  
Attaching file as resident: C: \ Documents and Settings \ nruiz \ My 
Documents \ TOSCA\ Spoiling \ abh_jb14kG \ extending models \ 2x100 -
micron_elliptic_vs_tilt \ 2x100 - micron_elliptic_vs_tilt_extended_minus8cm.op3  
Opening database ...liptic_vs_tilt_extended_minus8cm.op3, s imulation number 1 on 
25/May/2008 at 19:50:20  
TITLE=z=8cm cutting plane was removed  
Unit of Length           : CM  
Unit of Magn Flux Den    : GAUSS  
Unit of Magnetic Field   : OERSTED  
Unit of Magn Scalar Pot  : OCM  
Unit of Magn Vector Pot  : GCM  
Unit of Cond uctivity     : SCM  
Unit of Current density  : ACM2  
Unit of Power            : WATT  
Unit of Force            : NEWTON  
Unit of Energy           : JOULE  
Unit of Electric Field   : VCM  
Unit of Elec Flux Den    : CCM2  
Unit of Mass             : GRAMME  
**** COMMAND INPUT *** SELECT ACTION=DEFAULT  
**** COMMAND INPUT *** SELECT ACTION=SELECT OPTION=SURFACES  
**** COMMAND INPUT *** THREED OPTION=REFRESH  
*** CONTROL COMMAND ** $COMI 'C: \ Documents and Settings \ nruiz \ My 
Documents \ TOSCA\ Comis \ Dip_Eval_300_Nodal.comi'  MODE=CONTINUOUS 
Opening file for input: C: \ Documents and Settings \ nruiz \ My 
Documents \ TOSCA\ Comis \ Dip_Eval_300_Nodal.comi  
**** FILE INPUT ****** ACTIVATE CASE=1 MODELSYMMETRY=DATABASE  
The resident file has been unloaded to allow the new file to be checked.  
Opening file for checking: C: \ Documents and Settings \ nruiz \ My 
Documents \ TOSCA\ Spoiling \ abh_jb14kG \ extending models \ 2x100 -
micron_elliptic_vs_tilt \ 2x100 - micron_elliptic_vs_tilt_extended_minus8cm.op3  
**** FILE INPUT ****** LOAD  
Attaching file as resident: C: \ Documents and Settings \ nruiz \ My 
Documents \ TOSCA\ Spoiling \ abh_jb14kG \ extending models \ 2x100 -
micron_elliptic_vs_tilt \ 2x100 - micron_elliptic_vs_tilt_extended_minus8cm.op3  
Opening database ...liptic_vs_tilt_extended_minus8cm.op3, simulation number 1 on 
25/May/ 2008 at 19:50:53  
TITLE=z=8cm cutting plane was removed  
Unit of Length           : CM  
Unit of Magn Flux Den    : GAUSS  
Unit of Magnetic Field   : OERSTED  
Unit of Magn Scalar Pot  : OCM  
Unit of Magn Vector Pot  : GCM  
Unit of Conductivity     : SCM  
Unit of Cu rrent density  : ACM2  
Unit of Power            : WATT  
Unit of Force            : NEWTON  
Unit of Energy           : JOULE  
Unit of Electric Field   : VCM  
Unit of Elec Flux Den    : CCM2  
Unit of Mass             : GRAMME  
**** FILE INPUT ****** SELECT ACTION=DEFAULT 
**** FILE INPUT ****** SELECT ACTION=SELECT OPTION=SURFACES  
**** FILE INPUT ******  
**** FILE INPUT ****** THREED OPTION=GETVIEW  
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**** FILE INPUT ****** THREED OPTION=SETVIEW ROTX= - 90 ROTY=0.01 ROTZ=0.01 SIZE=100 
PERSPECTIVE=NO 
**** FILE INPUT  ****** SET FIELD=NODAL COIL=NODAL  
**** FILE INPUT ****** set XLOCAL=0,YLOCAL=0,ZLOCAL=0,PLOCAL=0,TLOCAL=0,SLOCAL=0  
**** FILE INPUT ****** CIRCLE RADIUS=1 TH1=0 TH2=360 ZC=0 NP=60  
**** FILE INPUT ****** PLOT FILE=TEMP COMPONENT=By  
X                 Y                 Z                 BY  
1.0               0.0               0.0               - 14163.221838764  
0.99452189536827  0.10452846326765  0.0               - 14162.806446465  
0.97814760073381  0.20791169081776  0.0               - 14162.510717193  
0.951056516 29515  0.30901699437495  0.0               - 14162.341017265  
0.9135454576426   0.4067366430758   0.0               - 14162.25213583  
0.86602540378444  0.5               0.0               - 14162.210476839  
0.80901699437495  0.58778525229247  0.0               - 14162.165329251  
0.74314482547739  0.66913060635886  0.0               - 14162.067371641  
0.66913060635886  0.74314482547739  0.0               - 14161.914594433  
0.58778525229247  0.80901699437495  0.0               - 14161.662715689  
0.5               0.8660254 0378444  0.0               - 14161.333207984  
0.4067366430758   0.9135454576426   0.0               - 14160.916837241  
0.30901699437495  0.95105651629515  0.0               - 14160.441508285  
0.20791169081776  0.97814760073381  0.0               - 14159.914040818  
0.10452846326765  0.99452189536827  0.0               - 14159.369443517  
0.0               1.0               0.0               - 14158.822561159  
- 0.1045284632677  0.99452189536827  0.0               - 14158.294760717  
- 0.2079116908178  0.97814760073381  0.0               - 14157.783552069  
- 0.3090169943749  0.95105651629515  0.0               - 14157.266117814  
- 0.4067366430758  0.9135454576426   0.0               - 14156.74850479  
- 0.5              0.86602540378444  0.0               - 14156.214193167  
- 0.5877852522925  0.80901699437495  0.0               - 14155.658491549  
- 0.6691306063589  0.74314482547739  0.0               - 14155.07654529  
- 0.7431448254774  0.66913060635886  0.0               - 14154.482306533  
- 0.8090169943749  0.58778525229247  0.0               - 14153.903318198  
- 0.8660254037844  0.5               0.0               - 14153.369907659  
- 0.9135454576426  0.4067366430758   0.0               - 14152.926629838  
- 0.9510565162952  0.30901699437495  0.0               - 14152.618433451  
- 0.9781476007338   0.20791169081776  0.0               - 14152.493506994  
- 0.9945218953683  0.10452846326765  0.0               - 14152.589940569  
- 1.0              0.0               0.0               - 14152.932915504  
- 0.9945218953683  - 0.1045284632677  0.0               - 1415 3.51801096  
- 0.9781476007338  - 0.2079116908178  0.0               - 14154.343419998  
- 0.9510565162952  - 0.3090169943749  0.0               - 14155.378395705  
- 0.9135454576426  - 0.4067366430758  0.0               - 14156.582637608  
- 0.8660254037844  - 0.5              0.0               - 14157.865888133  
- 0.8090169943749  - 0.5877852522925  0.0               - 14159.213505653  
- 0.7431448254774  - 0.6691306063589  0.0               - 14160.557094496  
- 0.6691306063589  - 0.7431448254774  0.0               - 14161.848552429  
- 0.5 877852522925  - 0.8090169943749  0.0               - 14163.059517056  
- 0.5              - 0.8660254037844  0.0               - 14164.168265547  
- 0.4067366430758  - 0.9135454576426  0.0               - 14165.170902605  
- 0.3090169943749  - 0.9510565162952  0.0               - 14166.062913137  
- 0.2079116908178  - 0.9781476007338  0.0               - 14166.853519502  
- 0.1045284632677  - 0.9945218953683  0.0               - 14167.551863513  
0.0               - 1.0              0.0               - 14168.162896764  
0.10452846326765  - 0.9945218953683  0.0               - 14168.683218789  
0.20791169081776  - 0.9781476007338  0.0               - 14169.099039803  
0.30901699437495  - 0.9510565162952  0.0               - 14169.392133901  
0.4067366430758   - 0.9135454576426  0.0               - 14169.536789695  
0.5               - 0.8660254037844  0.0               - 14169.512690175  
0.58778525229247  - 0.8090169943749  0.0               - 14169.312312022  
0.66913060635886  - 0.7431448254774  0.0               - 14168.937056385  
0.74314482547739  - 0.66913 06063589  0.0               - 14168.400606992  
0.80901699437495  - 0.5877852522925  0.0               - 14167.720236367  
0.86602540378444  - 0.5              0.0               - 14166.925138756  
0.9135454576426   - 0.4067366430758  0.0               - 14166.09834806 5 
0.95105651629515  - 0.3090169943749  0.0               - 14165.265408849  
0.97814760073381  - 0.2079116908178  0.0               - 14164.482016017  
0.99452189536827  - 0.1045284632677  0.0               - 14163.783981529  
1.0               0.0               0.0               - 14163.221838764  
Component: BY, from buffer: Circle  
Minimum: - 14169.5367896953, Maximum: - 14152.4935069936  
Integral = - 88936.9800883494  
**** FILE INPUT ****** FIT TYPE=FOURIER FILE=TEMP COMP=By ORDER=10 PRINT=YES  
Polynomial fitting to tabulate d values on a line  
Component:  BY  
Fourier coefficients  
   Order       Sine term         Cosine term       Amplitude         Phase  
   n            A_n               B_n  
     0        0.0               - 14161.229928783  14161.2299287827  179.999994991044  
     1        4.65362551353294  - 5.1715594743102  6.95710125099044  - 138.01754624113  
     2        0.06511040232441  2.71085332286577  2.7116351344868   - 1.3758892829255  
     3        - 0.018629312841   0.02822737628213  0.03382064559852  33.4237420306027  
     4        - 6.226690931E - 05  0.44176275077825  0.44176275516654  8.0758981544E - 03 
     5        - 3.156967654E - 03  - 3.641395952E - 03  4.8193577627E - 03  139.075809756733  
     6        1.463015892E - 03   - 1.04168556E - 03   1.7959744724E - 03  - 125.45133672036  
     7        8.1625057096E - 04  4.8987181458E - 06  8.1626527062E - 04  - 89.656141690398  
     8        4.9866337026E - 04  2.3009152433E - 03  2.3543313517E - 03  - 12.228255562204  
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     9        1.3782763069E - 04  - 7.529855982E - 04  7.654957654E - 04   - 169.62731411444  
* *** FILE INPUT ****** set xloc=1.374,0.000,74.981,2.699,0.000,0.000  
**** FILE INPUT ****** circ  
**** FILE INPUT ****** fit  
Polynomial fitting to tabulated values on a line  
Component:  BY  
Fourier coefficients  
   Order       Sine term         Cosine term       Amplitude         Phase  
   n            A_n               B_n  
     0        0.0               - 5.4555288062005  5.45552880620054  179.999994991044  
     1        - 0.0168299773886  - 0.1707010108206  0.17152866592515  174.369212576266  
     2        5.07767 27173E - 03  0.03383178578031  0.03421070723193  - 8.5355765642261  
     3        0.01432123088062  - 1.856113384E - 03  0.01444101141992  - 97.38469293707  
     4        - 6.691231953E - 03  1.3234512454E - 03  6.8208583218E - 03  78.8119324375829  
     5        - 2.823309 362E- 03  - 4.974628375E - 03  5.719965316E - 03   150.423275375887  
     6        8.1448365678E - 03  0.01101269519737  0.01369736537539  - 36.486114453426  
     7        6.191892909E - 03   9.2542828953E - 03  0.01113468857686  - 33.785847576462  
     8        - 1.4451757 93E- 03  9.037727344E - 03   9.1525432868E - 03  9.08495700215354  
     9        - 5.90514075E - 03   1.6497468997E - 03  6.1312602381E - 03  74.3909795088685  
**** FILE INPUT ****** set xloc=1.362,0.000,74.731,2.690,0.000,0.000  
**** FILE INPUT ****** circ  
**** FILE INP UT ****** fit  
Polynomial fitting to tabulated values on a line  
Component:  BY  
Fourier coefficients  
   Order       Sine term         Cosine term       Amplitude         Phase  
   n            A_n               B_n  
     0        0.0               - 5.3960906761972  5.39609067619721  179.999994991044  
     1        - 6.303748054E - 03  - 0.1757395096984  0.17585253057193  177.945685371731  
     2        - 1.724816197E - 03  0.04217618394546  0.04221143782336  2.34183463045649  
     3        0.01593779981791  - 6.554857298E - 03  0.01723309656526  - 112.35625622872  
     4        2.8109563302E - 03  7.1221023268E - 03  7.6567497702E - 03  - 21.538192197483  
     5        3.0424887929E - 03  - 2.715035426E - 03  4.0777635316E - 03  - 131.74486353951  
     6        - 4.610919032E - 03  6.9654883587E - 03  8.3533587491E - 03  33.5032184210446  
     7        1.6607229841E - 03  0.01022753106116  0.0103614860149   - 9.2230589314923  
     8        5.1316060632E - 03  4.0134610763E - 03  6.5146949736E - 03  - 51.970814350807  
     9        5.1507520595E - 03  - 2.623088254E - 03  5.7802109622E - 03  - 116.98806465358  
**** FILE INPUT ****** set xloc=1.350,0.000,74.481,2.681,0.000,0.000  
**** FILE INPUT ****** circ  
**** FILE INPUT ****** fit  
Polynomial fitting to tabulated values on a line  
Component:  BY  
Fourier coefficients  
   Order       Sine term         Cosine term       Amplitude         Phase  
   n            A_n               B_n  
     0        0.0               - 5.3226354037128  5.32263540371283  179.999994991044  
     1        3.5975865 751E- 03  - 0.1793324295713  0.1793685115206   - 178.85073895747  
     2        - 3.540815259E - 03  0.03329422539948  0.03348197750509  6.07054425273992  
     3        8.0464508355E - 03  6.8704450932E - 03  0.01058056647002  - 49.507711780297  
     4        - 0.0181358052348  - 6.80834172E - 03   0.01937165322033  110.576576514822  
     5        - 4.799463861E - 03  - 1.001028752E - 03  4.9027453449E - 03  101.781333762995  
     6        - 1.581774896E - 03  - 5.037607792E - 03  5.2801045529E - 03  162.56805835838  
     7        - 6.340173195E - 04  0.01622444987614  0.01623683318092  2.23785962239485  
     8        - 2.00519836E - 03   5.8541896055E - 03  6.1880818029E - 03  18.907544000601  
     9        3.3446749663E - 03  - 7.721660831E - 04  3.4326507382E - 03  - 102.99978609285  
****  FILE INPUT ****** set xloc=1.338,0.000,74.232,2.672,0.000,0.000  
**** FILE INPUT ****** circ  
**** FILE INPUT ****** fit  
Polynomial fitting to tabulated values on a line  
Component:  BY  
Fourier coefficients  
   Order       Sine term         Cosine term       Amplitude         Phase  
   n            A_n               B_n  
     0        0.0               - 5.2365498124121  5.2365498124121   179.999994991044  
     1        9.6710022669E - 03  - 0.1630760471865  0.16336255828933  - 176.60612206643  
     2        0.01765975 976018  0.01972255920183  0.02647350479738  - 41.841554870655  
     3        - 9.447436244E - 03  6.0596624357E - 03  0.01122379438613  57.3235558030462  
     4        - 5.783492371E - 03  - 0.0179566940429  0.01886509064256  162.147282956251  
     5        - 6.82836447 6E- 03  3.3041885457E - 03  7.585790886E - 03   64.1780461042141  
     6        8.9752446137E - 03  - 2.053754204E - 03  9.207221199E - 03   - 102.88876787707  
     7        - 3.182523228E - 03  0.01109710489124  0.01154444416432  16.0022876545783  
     8        - 8.947663227 E- 03  3.0604180317E - 04  8.9528955543E - 03  88.041042446106  
     9        2.9118555872E - 03  0.01248614979323  0.0128211871377   - 13.127148647153  
**** FILE INPUT ****** set xloc=1.327,0.000,73.982,2.663,0.000,0.000  
**** FILE INPUT ****** circ  
**** FILE INPUT ****** fit  
Polynomial fitting to tabulated values on a line  
Component:  BY  
Fourier coefficients  
   Order       Sine term         Cosine term       Amplitude         Phase  
   n            A_n               B_n  
     0        0.0               - 5.139974466927 6  5.13997446692761  179.999994991044  
     1        0.01784765672023  - 0.1611717519349  0.16215693778607  - 173.68098474899  
     2        0.01308234533318  0.0217545679869   0.02538521198874  - 31.021052524404  
     3        - 1.263289006E - 03  5.9076636117E - 03  6.0412240864E - 03  12.0702845141411  
     4        4.8439101676E - 03  - 6.797978796E - 03  8.3472139919E - 03  - 144.5281656903  




