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Abstract 

 

The numerical method used so far at Jefferson Lab to evaluate the multipole components in Opera 3D 

TOSCA magnet models, inspired on the experimental method using rotating coils is described in the first 

part of this document.  

 

As its results are not flawless when it comes to evaluating normal quadrupole, it is challenged in a 

second chapter by a new evaluation method, inspired from the mathematical definition of the 

quadrupole term of the field expansion. After some adjustments this new method appears to give 

results that differ significantly from the former one.  

 

In the third chapter the two methods are reconciled by the introduction of an analytical term standing 

for the geometrical effects that were not taken into account in the first method. As the corrected initial 

method and the new one eventually agree within a few percents prior to any optimization in the 

reconciliation process and to the percent level in the end, a greater confidence is gained in those 

numerical methods regarding their physical relevance as our understanding of the physical processes at 

stake gets finer. 
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I - Field multipoles evaluation method with circles 

II..11  --  PPrreesseennttaattiioonn  

Until now, it is the method that has always been used at Jefferson Lab to evaluate field multipoles in 

TOSCA models. The numerical code used in this study [1] to model the dipoles and compute their field 

has features that allow to measure the quality of the field induced by modeled magnets in a way that is 

very similar to the rotating coil technique, so that it is possible to compare the results of calculations 

with measured data when available. 

In the real measurements that are made at Jlab, the coil rotates around the expected beam path and is 

then moved longitudinally to measure the field along the beam trajectory. As the quantity measured is 

the amount of flux cut by the coil, all the harmonics are summed and cannot be measured 

independently. More advanced devices are able to separate the harmonics via a set of multiple 

dedicated coils. 

In the simulated models, the field is evaluated along a circle in a plane normal to the beam trajectory 

(Fig. 1&2). The circle is then displaced along a trajectory that follows the expected beam path - e.g. a 

circular path within a bending dipole field - and the field is evaluated at each step. A Fourier fit is 

computed from the circular field evaluation along each circle, simulating the values that would be 

measured for the field multipoles using rotating coils in a real magnet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The circles used to evaluate the 'ABH' magnet models have a radius of 1 cm. This value has been decided 

upon according to several criteria: 

 1) The radius cannot be much larger for the magnet poles are only 1.295 cm away from the 

beam trajectory (and thus from the center of the circle) and a circle evaluating fields too close to the 

poles would see its evaluation accuracy reduced due to irregularities in the mesh inherent to a change of 

medium. 

 

Fig. 1: Representation of the 1-cm circle around 

which the fields are evaluated in the simulated 

models. Green is the steel (magnet poles on this 

picture). The coils are in red. 
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 2) Since the fields around the circle are evaluated by nodal interpolation, the perimeter of the 

circle has to be sufficient for the number of finite elements available for the interpolation along the 

circle to satisfy the sampling theorem.  

 3) One can use the fact that each 2n-pole term in the field decomposition is proportional to rn-1 

so that even evaluations made with a large circle can eventually lead to an evaluation at a beam-radius 

scale. 

 

II..22  --  LLiimmiittss  ooff  tthhee  mmeetthhoodd  

Although this method has been giving satisfying results for local scale study of the property of the 

magnetic field, it turns out that it suffers a major flaw when it comes to the evaluation of integrated 

normal quadrupole along the beam path. Normal quadrupole can be interpreted as the local variation of 

the normal dipole term. Since each circle is used to evaluate this variation locally, the integration along 

the beam path is therefore computed as follows: 

 (1) 

 

That's to say the integration is calculated after the local variation of the dipole term is evaluated. This 

method's flaw comes from the fact that the circles are created normal to the trajectory of the beam, for 

local accuracy purposes. Since the circles have a radius of 1 cm (minimum size allowed by mesh density) 

and the beam trajectory is mainly circular in the dipole field, it turns out that the integration path length 

is affected by the size of the circles and trajectories that should have the same length (Fig. 3) are 

distorted, thus introducing a bias in the evaluation of geometrical effects. 

Fig. 2: Field evaluation around a 1-cm radius circle situated in the center of an 

'ABH' dipole model.   
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As a result the natural compensation that should exist between the difference in path length that causes 

weak focusing on the one hand and the edge effects caused by the non-normal incidence on the other 

hand doesn't appear on the results and the integrated field value obtained is unusable. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

It was therefore decided that a new method ought to be developed to be able to evaluate correctly the 

integrated normal quadrupole content of those dipole magnet models. 

 

 

Fig. 4: Normal quadrupole field along the length of the 
"ABH" magnet. Note peak area is not compensated by 
the body value. 
'0' is the center of the magnet. Steel ends at z=48cm. 
 

 

Fig. 3: Schematic representation of electron trajectories in a dipole field. Scheme on the left 
represents realistic trajectories of particles entering an homogenous dipole field, with different initial 
position but with equal radii of curvature. Scheme on the right shows the assumed trajectories that 
the method using circles implies, showing the distorted length and radii of curvature of the 
trajectories represented with dotted lines. 
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II - Field multipoles evaluation method with trajectory integrals 

IIII..11  --  PPrreesseennttaattiioonn  

The purpose of this method is to focus the evaluation on the integral and to deduce the quadrupole 

term from it instead of calculating the quadrupole locally and compute the integral out of it. The idea is 

to calculate : 

 

 (2) 

 

 

  Instead of:  

 

 (3) 

 

Equations (2) and (3) are not equivalent in a non-Euclidian reference frame like the one implied by the 

curved path of the beam. Concretely, the normal dipole term of the field is directly evaluated and 

summed along the trajectory of the particle by the post processor of the numerical code. This operation 

is repeated for different values of the initial position of the particle and the normal quadrupole term is 

computed from the variation of the integral of the dipole term as the initial position varies along x or y. 

 

For simplicity reasons in the setup of the field evaluation, the trajectory of the particle will be assumed 

to be strictly circular in dipole magnet models. Figure 6 shows from various angles how the actual 

trajectory of an electron in the magnet's field and a circular approximation diverge in the end, outside 

the magnet, when the fringe fields become too low to maintain the circular shape of the particle 

trajectory. The evaluations those two trajectories give for field integral should be close, for they only 

differ in regions that will not affect much the outcome of the field integration for the field strength there 

is lower. Data regarding the definition of the circular trajectory is given in table 1. 

 

 

 

 

 

 

 

 

Trajectory data 

magnet modeled AB'H'   

radius of curvature 1592.5 cm 

sagitta 0.785 cm 

Xcenter 1592.1075 cm 

starting angle -90 deg 

end angle -87.3 deg 

bending angle 3.6 deg 

total 1/2 angle incl. outer 25cm 2.7 deg 

Table 1: Data defining the circular trajectory of 
reference. The position 'Xcenter' will vary to 
evaluate the variation of the integral of the 
vertical component of the field, thus giving us 
the normal quadrupole component according 
to equation (2). The sagitta and bending angle 
are design parameters. 
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Fig. 6: Comparison between a circular trajectory (bold) and a trajectory with same starting point but 
calculated by the particle tracking function of the Opera post processor. The divergence is only 
obvious in the fringe fields outside the magnet. Since it is simpler and faster to introduce in the 
calculations, the circular path will be used so that this study reaches its conclusions faster, although a 
confirmation could be necessary in a second time using trajectories as realistic as possible.  
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IIII..22  --  RReessuullttss  

II.2.1 - Field evaluation by nodal interpolation 

The first calculation made consisted in realizing 10(+1) integrals, over trajectories whose relative initial 

'x' position would vary between -1mm and +1mm with respect to the reference trajectory (Table 2). 

Each trajectory consists of 1000 points. 

Relative x 
(cm) 

x center 
(cm) 

By integral 
half trajectory  

(G.cm) 
full trajectory (G.cm) 

-0.1 1592.0075 -7.002429173868490E+05 -1.400485834773700E+06 

-0.08 1592.0275 -7.002443908297820E+05 -1.400488781659560E+06 

-0.06 1592.0475 -7.002452040264560E+05 -1.400490408052910E+06 

-0.04 1592.0675 -7.002445804347790E+05 -1.400489160869560E+06 

-0.02 1592.0875 -7.002417373441280E+05 -1.400483474688260E+06 

0 1592.1075 -7.002392229385580E+05 -1.400478445877120E+06 

0.02 1592.1275 -7.002382521527560E+05 -1.400476504305510E+06 

0.04 1592.1475 -7.002364974164070E+05 -1.400472994832810E+06 

0.06 1592.1675 -7.002345164391390E+05 -1.400469032878280E+06 

0.08 1592.1875 -7.002321758251870E+05 -1.400464351650370E+06 

0.1 1592.2075 -7.002283350778150E+05 -1.400456670155630E+06 

 

 

 

Then dlB
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Table 2: Summary of the values of By integrals used to compute the first derivatives, plotted in figure 7. 

Fig. 7: First plot of the values of the derivatives calculated from the integrated By values of Table 2. 
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Since the graph on Figure 7 is too erratic to be used it was decided to try and use a finer step. The same 

evaluation was then run for 100 and 1000 trajectories (Fig. 8).  

 
 

 

This plot is still very erratic (its variations reach 2 orders of magnitude) and doesn't obviously allow to 

compute a normal quadrupole from the variation of Integrated By. 

 

After a fruitless attempt to average the values of the integrals over several trajectories in order to 

smoothen the derivative curve (Figure 9 and 10), it was decided that the nodal interpolation method of 

evaluating the fields was far too dependent on mesh density and that the alternate method using 

integrals over the surfaces of the sources should be used instead, in spite of its tremendous slowness 

(~30 min per trajectory integral). 

 

 

 

   

Fig. 8: Same as figure 7, with a step 10 
times (blue) and 100 times (red) finer 
between the positions of the 
trajectories used for the integrals.  
Still quite shapeless. 



10 
 

 
 

 

 

 
  

Fig. 9 : By integrals and their derivatives evaluated by nodal interpolation. This set has 10,000 points. The first 2 

graphs are not averaged, the 4 latter use an average on 100 and on 1000 points. 

 

Fig. 10: Attempt to determine a polynomial fit for the most smoothened curve. 
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II.2.2 - Field evaluation by surface integrals 

As the field evaluation method using interpolation between nodes turned out to be unable to allow a 

normal quadrupole calculation, the same process was followed again using integrals over the surfaces of 

the sources. Since these evaluations take much longer, the number of trajectories as well as the number 

of evaluation points on the trajectories was reduced. 

 
 

 

 
Fig. 11: By integral and its derivative with respect to x evaluated using the surface integrals method. The 
calculation was made using 100 trajectories of 500 points each. 
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This second method of evaluation is obviously less affected by mesh coarseness for numerical noise is 

imperceptible (R2 > .99 on every plot). Those results will therefore be considered as more reliable than 

those from the previous evaluation method. 

 

  

Fig. 12: By integral and its derivative with respect to y evaluated using the surface integrals method. The 
calculation was made using 100 trajectories of 500 points each. 
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Interpretation 

 

The field gradient presents a linear dependency on x and on y, which is a characteristic of a sextupole 

component. The constant term in the gradient represents the quadrupole term.  Since the fits are 

applied to values that represent an integration over a 98cm-long dipole, we deduce that the 

components that are observed are: 

 

Normal terms of field expansion along x 

Dipole -14,587 G 

Quadrupole  1.5297 G/cm 

Sextupole 8.2800 G/cm2 

Normal terms of field expansion along y 

Dipole -14,587 G 

Quadrupole  -0.0052 G/cm 

Sextupole -8.2697 G/cm2 

 

 

 

  

Table 3: Summary of the first normal multipole terms of the field expansions along x and y respectively. 
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III - Reconciliation 

IIIIII..11  --  PPrreesseennttaattiioonn  

The idea of reconciliation between the two previously presented methods comes from the assumption 

that the circle method (Chap. I) gives inaccurate results because it does not take geometrical effects 

(path curvature...) into account (Fig. 3). 

 

According to the equations of motion in the approximation of linear beam dynamics [2], 

 

  (4) 

 

the field evaluation method using small circles allows to compute k0 as the local field gradient but 

ignores the effect of the term  which represents the geometrical effect, the constant curvature that is 

responsible for weak focusing in the bending plane in sector magnets for example. 

 

The idea therefore emerged that it may be possible to reconcile those two evaluation methods by 

computing independently the effect of local gradient and the geometrical effect and by comparing their 

combined influence with the result of the second evaluation method (Chap. II), using focal lengths: 

 

sstepcirclegeom fff

111 ?

integrals trajectory
  (5) 

 

If (5) was verified, that would confirm that the only difference between the evaluation methods 

developed in sections I and II (using local circles and trajectory integrals respectively) is the geometrical 

effect mentioned earlier. 

 

IIIIII..22  --  RReessuullttss  

It was decided that formula (5) would be tested in the case of our rectangular 'ABH' magnet. The basic 

data concerning this magnet are given in Table 4: 

Rectangular magnet data 

Parameter symbol value unit comments 

Radius of trajectory curvature inside magnet ρ0 1592.5 cm   

Deviation Angle θ 3.6 deg   

  " 0.062832 rad   

Half Gap Height h 1.295 cm   

Straight magnet length L 96.012 cm   

Central B field B 14178.4 G 
From 

'abh_jb14kG_reflected_75cmV2.op3' 
evaluation at (0,0,0) 

Curved length of reference trajectory l 100.0597 cm ρ0.θ 

 
Table 4: Characteristics of the magnet that will be used for upcoming calculations 
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Tables 5 to 7 summarize the values obtained for the focal lengths needed in equation (5). 

Geometrical term 

focal length 25345.4247 cm 

 

Data from local circles method value unit 

Full length integral of quadrupole -733.01 G 

Equivalent gradient -7.33 G/cm 

focal length -30803.24 cm 

 

Data from curved integrals method 

Normal terms of field expansion along x 

Dipole -13,997 G 

Quadrupole  1.4679 G/cm 

focal length  153731.312 cm 

 

 

 

The geometrical term was obtained using [2]: 

2

0

1 l

f geom

 (6) 

 

 

The field gradients ( ) were expressed as focal lengths using: 

lG

B
f

yx

yx
.

.

,

0
,  (7) 

The thin lens approximation assumed in equations (5), (6) and (7) turns out to be reasonable as the focal 

lengths that were obtained using it (tables 5, 6 and 7) are 2 to 3 orders of magnitude bigger than the 

length of the magnet (table 4). 

  

Tables 5, 6, 7: Results obtained in the case of the 'ABH' magnet for each of the 3 focal 
lengths (highlighted) appearing in formula (5). 
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Table 8 gives the actual inverses of the focal lengths and compares the RHS and LHS (underlined) of 

equation (5). 

comparison chart 

invert focal lengths values units 

from curved integrals 6.50E-06 cm-1 

from geometrical term 3.95E-05 cm-1 

from stepped circles -3.25E-05 cm-1 

sum(stepped circles, geometrical term) 6.99E-06 cm-1 

concordance     

taking B = B(0,0,0) 7.5 % 

taking B = dipole term evaluated with 
trajectory integrals method 

0.3 % 

 

 

 

 

B(0,0,0) was taken in the first place as a quick evaluation of the dipole field of the magnet. Since it's just 

representative of one point, through which the beam doesn't even pass, it's not very accurate though 

even if the order of magnitude is respected. On the other hand, the dipole term computed out of the 

evaluation of the integrated field along the particles trajectories is much more representative of what 

the beam actually witnesses as it goes through the magnet.  

The reconciliation is therefore considered a success. 

 

  

Table 8: Summary of the terms of equation (5). LHS and RHS are underlined for easier reading. Their 
concordance in % is given in the lower part of the table. They match to 7.5% using the data given in table 4. 
Note that if instead of B(0,0,0), the value used for the norm of the field B is the dipole term coming from 
trajectory integrals (table 7), sides of equation (5) match to 0.3%. 
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IV - Conclusions and suggestions 

IIVV..11  --  CCoonncclluussiioonnss  

1. A new method for evaluating normal quadrupole in Opera/TOSCA 3D models was accurately 

developed, that allowed to upgrade the method used hitherto by broadening our understanding 

of it.  

 

2. In spite of its being very time consuming, the new method is more direct and simpler than the 

older one and could turn out to be more interesting when it comes to normal multipoles if it 

was optimized to take advantage of its accuracy to reduce its time consumption. 

 

IIVV..22  --  SSuuggggeessttiioonnss  

The following list is a set of suggestions and comments for anyone interested in continuing this study: 

 

 - As mentioned in the introduction of section II, the trajectories used in this study are mere 

circles. One way of refining the results of the evaluations is to use the realistic trajectory of an electron 

instead, that could be obtained by using the Opera post processor particle tracking possibilities.  

 - A possible way of taking advantage of the speed of the first method while keeping in mind the 

idea of the second might be to simply orient all the local circles so that they are normal to  at all times. 

The advantage is that the field gradient is therefore evaluated in a classical Euclidian reference frame 

instead of the curved path frame, although the analogy with the measuring process that is used in 

reality is lost and only the accuracy of the integrated result would be interesting, abandoning local 

relevance (the circles would not be normal to the trajectory anymore). One should also be aware (a) 

that this whole idea relies on a small beta phase advance assumption (i.e. distance between parallel 

incident particles is conserved in the system) and (b) that the step between the circles should be a 

constant with respect to the beam curved path length and not with respect to  so that places where 

beam trajectory has strongest angle with respect to  direction are not underrepresented in the 

integration.  

 - The 1-cm radius of the circles used in the first method was constrained by local mesh density. 

One should be aware though, that it was established [3] that field evaluation using surface integrals is 

not influenced by local mesh density, which might give a degree of freedom regarding the radii of the 

circles. Another argument favoring a reduction of their radii is that the noise in the integration method 

comes from " higher order solution errors decreasing rapidly with distance from the sources " [3], which 

might be efficiently reduced if the circles get less close to the poles. 
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